
Picamera 1.13 Documentation
Release 1.13

Dave Jones

Nov 03, 2018

Contents

1 Installation 1

2 Getting Started 5

3 Basic Recipes 11

4 Advanced Recipes 25

5 Frequently Asked Questions (FAQ) 57

6 Camera Hardware 65

7 Development 83

8 Deprecated Functionality 85

9 API - The PiCamera Class 95

10 API - Streams 125

11 API - Renderers 131

12 API - Encoders 135

13 API - Exceptions 143

14 API - Colors and Color Matching 147

15 API - Arrays 153

16 API - mmalobj 161

17 Change log 193

18 License 205

Python Module Index 207

i

ii

CHAPTER 1

Installation

1.1 Raspbian installation

If you are using the Raspbian1 distro, you probably have picamera installed by default. You can find out simply
by starting Python and trying to import picamera:

$ python -c "import picamera"
$ python3 -c "import picamera"

If you get no error, you’ve already got picamera installed! Just continue to Getting Started (page 5). If you don’t
have picamera installed you’ll see something like the following:

$ python -c "import picamera"
Traceback (most recent call last):

File "<string>", line 1, in <module>
ImportError: No module named picamera
$ python3 -c "import picamera"
Traceback (most recent call last):

File "<string>", line 1, in <module>
ImportError: No module named 'picamera'

To install picamera on Raspbian, it is best to use the system’s package manager: apt. This will ensure that picamera
is easy to keep up to date, and easy to remove should you wish to do so. It will also make picamera available for
all users on the system. To install picamera using apt simply run:

$ sudo apt-get update
$ sudo apt-get install python-picamera python3-picamera

To upgrade your installation when new releases are made you can simply use apt’s normal upgrade procedure:

$ sudo apt-get update
$ sudo apt-get upgrade

If you ever need to remove your installation:

$ sudo apt-get remove python-picamera python3-picamera

1 https://www.raspberrypi.org/downloads/raspbian/

1

https://www.raspberrypi.org/downloads/raspbian/

Picamera 1.13 Documentation, Release 1.13

1.2 Alternate distro installation

On distributions other than Raspbian, it is probably simplest to install system wide using Python’s pip tool:

$ sudo pip install picamera

If you wish to use the classes in the picamera.array (page 153) module then specify the “array” option which
will pull in numpy as a dependency:

$ sudo pip install "picamera[array]"

Warning: Be warned that older versions of pip will attempt to build numpy from source. This will take a
very long time on a Pi (several hours on slower models). Modern versions of pip will download and install a
pre-built numpy “wheel” instead which is much faster.

To upgrade your installation when new releases are made:

$ sudo pip install -U picamera

If you ever need to remove your installation:

$ sudo pip uninstall picamera

1.3 Firmware upgrades

The behaviour of the Pi’s camera module is dictated by the Pi’s firmware. Over time, considerable work has gone
into fixing bugs and extending the functionality of the Pi’s camera module through new firmware releases. Whilst
the picamera library attempts to maintain backward compatibility with older Pi firmwares, it is only tested against
the latest firmware at the time of release, and not all functionality may be available if you are running an older
firmware. As an example, the annotate_text (page 106) attribute relies on a recent firmware; older firmwares
lacked the functionality.

You can determine the revision of your current firmware with the following command:

$ uname -a

The firmware revision is the number after the #:

Linux kermit 3.12.26+ #707 PREEMPT Sat Aug 30 17:39:19 BST 2014 armv6l GNU/Linux
/

/
firmware revision --+

On Raspbian, the standard upgrade procedure should keep your firmware up to date:

$ sudo apt-get update
$ sudo apt-get upgrade

Warning: Previously, these documents have suggested using the rpi-update utility to update the Pi’s
firmware; this is now discouraged. If you have previously used the rpi-update utility to update your
firmware, you can switch back to using apt to manage it with the following commands:

$ sudo apt-get update
$ sudo apt-get install --reinstall libraspberrypi0 libraspberrypi-{bin,dev,doc} z
> raspberrypi-bootloader
$ sudo rm /boot/.firmware_revision

2 Chapter 1. Installation

Picamera 1.13 Documentation, Release 1.13

You will need to reboot after doing so.

Note: Please note that the PiTFT2 screen (and similar GPIO-driven screens) requires a custom firmware for op-
eration. This firmware lags behind the official firmware and at the time of writing lacks several features including
long exposures and text overlays.

2 https://www.adafruit.com/product/1601

1.3. Firmware upgrades 3

https://www.adafruit.com/product/1601

Picamera 1.13 Documentation, Release 1.13

4 Chapter 1. Installation

CHAPTER 2

Getting Started

Warning: Make sure your Pi is off while installing the camera module. Although it is possible to install
the camera while the Pi is on, this isn’t good practice (if the camera is active when removed, it’s possible to
damage it).

Connect your camera module to the CSI port on your Raspberry Pi; this is the long thin port adjacent to the HDMI
socket. Gently lift the collar on top of the CSI port (if it comes off, don’t worry, you can push it back in but try to
be more gentle in future!). Slide the ribbon cable of the camera module into the port with the blue side facing the
Ethernet port (or where the Ethernet port would be if you’ve got a model A/A+).

Once the cable is seated in the port, press the collar back down to lock the cable in place. If done properly you
should be able to easily lift the Pi by the camera’s cable without it falling out. The following illustrations show a
well-seated camera cable with the correct orientation:

5

Picamera 1.13 Documentation, Release 1.13

Make sure the camera module isn’t sat on anything conductive (e.g. the Pi’s USB ports or its GPIO pins).

2.1 Pi Zero

The 1.2 model of the Raspberry Pi Zero3 includes a small form-factor CSI port which requires a camera adapter
cable4.

3 https://www.raspberrypi.org/products/pi-zero/
4 https://shop.pimoroni.com/products/camera-cable-raspberry-pi-zero-edition

6 Chapter 2. Getting Started

https://www.raspberrypi.org/products/pi-zero/
https://shop.pimoroni.com/products/camera-cable-raspberry-pi-zero-edition
https://shop.pimoroni.com/products/camera-cable-raspberry-pi-zero-edition

Picamera 1.13 Documentation, Release 1.13

To attach a camera module to a Pi Zero:

1. Remove the existing camera module’s cable by gently lifting the collar on the camera module and pulling
the cable out.

2. Next, insert the wider end of the adapter cable with the conductors facing in the same direction as the
camera’s lens.

3. Finally, attach the adapter to the Pi Zero by gently lifting the collar at the edge of the board (be careful with
this as they are more delicate than the collars on the regular CSI ports) and inserting the smaller end of the
adapter with the conductors facing the back of the Pi Zero.

Your setup should look something like this:

2.1. Pi Zero 7

Picamera 1.13 Documentation, Release 1.13

2.2 Testing

Now, apply power to your Pi. Once booted, start the Raspberry Pi Configuration utility and enable the camera
module:

8 Chapter 2. Getting Started

Picamera 1.13 Documentation, Release 1.13

You will need to reboot after doing this (but this is one-time setup so you won’t need to do it again unless you re-
install your operating system or switch SD cards). Once rebooted, start a terminal and try the following command:

raspistill -o image.jpg

If everything is working correctly, the camera should start, a preview from the camera should appear on the display
and, after a 5 second delay it should capture an image (storing it as image.jpg) before shutting down the camera.
Proceed to the Basic Recipes (page 11).

If something else happens, read any error message displayed and try any recommendations suggested by such
messages. If your Pi reboots as soon as you run this command, your power supply is insufficient for running your
Pi plus the camera module (and whatever other peripherals you have attached).

2.2. Testing 9

Picamera 1.13 Documentation, Release 1.13

10 Chapter 2. Getting Started

CHAPTER 3

Basic Recipes

The following recipes should be reasonably accessible to Python programmers of all skill levels. Please feel free
to suggest enhancements or additional recipes.

Warning: When trying out these scripts do not name your file picamera.py. Naming scripts after existing
Python modules will cause errors when you try and import those modules (because Python checks the current
directory before checking other paths).

3.1 Capturing to a file

Capturing an image to a file is as simple as specifying the name of the file as the output of whatever capture()
(page 97) method you require:

from time import sleep
from picamera import PiCamera

camera = PiCamera()
camera.resolution = (1024, 768)
camera.start_preview()
Camera warm-up time
sleep(2)
camera.capture('foo.jpg')

Note that files opened by picamera (as in the case above) will be flushed and closed so that when the capture()
(page 97) method returns, the data should be accessible to other processes.

3.2 Capturing to a stream

Capturing an image to a file-like object (a socket()5, a io.BytesIO6 stream, an existing open file object,
etc.) is as simple as specifying that object as the output of whatever capture() (page 97) method you’re using:

5 https://docs.python.org/3.4/library/socket.html#socket.socket
6 https://docs.python.org/3.4/library/io.html#io.BytesIO

11

https://docs.python.org/3.4/library/socket.html#socket.socket
https://docs.python.org/3.4/library/io.html#io.BytesIO

Picamera 1.13 Documentation, Release 1.13

from io import BytesIO
from time import sleep
from picamera import PiCamera

Create an in-memory stream
my_stream = BytesIO()
camera = PiCamera()
camera.start_preview()
Camera warm-up time
sleep(2)
camera.capture(my_stream, 'jpeg')

Note that the format is explicitly specified in the case above. The BytesIO7 object has no filename, so the camera
can’t automatically figure out what format to use.

One thing to bear in mind is that (unlike specifying a filename), the stream is not automatically closed after
capture; picamera assumes that since it didn’t open the stream it can’t presume to close it either. However, if the
object has a flush method, this will be called prior to capture returning. This should ensure that once capture
returns the data is accessible to other processes although the object still needs to be closed:

from time import sleep
from picamera import PiCamera

Explicitly open a new file called my_image.jpg
my_file = open('my_image.jpg', 'wb')
camera = PiCamera()
camera.start_preview()
sleep(2)
camera.capture(my_file)
At this point my_file.flush() has been called, but the file has
not yet been closed
my_file.close()

Note that in the case above, we didn’t have to specify the format as the camera interrogated the my_file object
for its filename (specifically, it looks for a name attribute on the provided object). As well as using stream classes
built into Python (like BytesIO8) you can also construct your own custom outputs (page 31).

3.3 Capturing to a PIL Image

This is a variation on Capturing to a stream (page 11). First we’ll capture an image to a BytesIO9 stream
(Python’s in-memory stream class), then we’ll rewind the position of the stream to the start, and read the stream
into a PIL10 Image object:

from io import BytesIO
from time import sleep
from picamera import PiCamera
from PIL import Image

Create the in-memory stream
stream = BytesIO()
camera = PiCamera()
camera.start_preview()
sleep(2)
camera.capture(stream, format='jpeg')
"Rewind" the stream to the beginning so we can read its content

(continues on next page)

7 https://docs.python.org/3.4/library/io.html#io.BytesIO
8 https://docs.python.org/3.4/library/io.html#io.BytesIO
9 https://docs.python.org/3.4/library/io.html#io.BytesIO

10 http://effbot.org/imagingbook/pil-index.htm

12 Chapter 3. Basic Recipes

https://docs.python.org/3.4/library/io.html#io.BytesIO
https://docs.python.org/3.4/library/io.html#io.BytesIO
https://docs.python.org/3.4/library/io.html#io.BytesIO
http://effbot.org/imagingbook/pil-index.htm

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

stream.seek(0)
image = Image.open(stream)

3.4 Capturing resized images

Sometimes, particularly in scripts which will perform some sort of analysis or processing on images, you may
wish to capture smaller images than the current resolution of the camera. Although such resizing can be performed
using libraries like PIL or OpenCV, it is considerably more efficient to have the Pi’s GPU perform the resizing
when capturing the image. This can be done with the resize parameter of the capture() (page 97) methods:

from time import sleep
from picamera import PiCamera

camera = PiCamera()
camera.resolution = (1024, 768)
camera.start_preview()
Camera warm-up time
sleep(2)
camera.capture('foo.jpg', resize=(320, 240))

The resize parameter can also be specified when recording video with the start_recording() (page 103)
method.

3.5 Capturing consistent images

You may wish to capture a sequence of images all of which look the same in terms of brightness, color, and
contrast (this can be useful in timelapse photography, for example). Various attributes need to be used in order to
ensure consistency across multiple shots. Specifically, you need to ensure that the camera’s exposure time, white
balance, and gains are all fixed:

• To fix exposure time, set the shutter_speed (page 119) attribute to a reasonable value.

• Optionally, set iso (page 115) to a fixed value.

• To fix exposure gains, let analog_gain (page 105) and digital_gain (page 108) settle on reasonable
values, then set exposure_mode (page 110) to 'off'.

• To fix white balance, set the awb_mode (page 107) to 'off', then set awb_gains (page 106) to a (red,
blue) tuple of gains.

It can be difficult to know what appropriate values might be for these attributes. For iso (page 115), a simple rule
of thumb is that 100 and 200 are reasonable values for daytime, while 400 and 800 are better for low light. To de-
termine a reasonable value for shutter_speed (page 119) you can query the exposure_speed (page 110)
attribute. For exposure gains, it’s usually enough to wait until analog_gain (page 105) is greater than 1 be-
fore exposure_mode (page 110) is set to 'off'. Finally, to determine reasonable values for awb_gains
(page 106) simply query the property while awb_mode (page 107) is set to something other than 'off'. Again,
this will tell you the camera’s white balance gains as determined by the auto-white-balance algorithm.

The following script provides a brief example of configuring these settings:

from time import sleep
from picamera import PiCamera

camera = PiCamera(resolution=(1280, 720), framerate=30)
Set ISO to the desired value
camera.iso = 100
Wait for the automatic gain control to settle

(continues on next page)

3.4. Capturing resized images 13

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

sleep(2)
Now fix the values
camera.shutter_speed = camera.exposure_speed
camera.exposure_mode = 'off'
g = camera.awb_gains
camera.awb_mode = 'off'
camera.awb_gains = g
Finally, take several photos with the fixed settings
camera.capture_sequence(['image%02d.jpg' % i for i in range(10)])

3.6 Capturing timelapse sequences

The simplest way to capture long time-lapse sequences is with the capture_continuous() (page 98)
method. With this method, the camera captures images continually until you tell it to stop. Images are auto-
matically given unique names and you can easily control the delay between captures. The following example
shows how to capture images with a 5 minute delay between each shot:

from time import sleep
from picamera import PiCamera

camera = PiCamera()
camera.start_preview()
sleep(2)
for filename in camera.capture_continuous('img{counter:03d}.jpg'):

print('Captured %s' % filename)
sleep(300) # wait 5 minutes

However, you may wish to capture images at a particular time, say at the start of every hour. This simply requires
a refinement of the delay in the loop (the datetime11 module is slightly easier to use for calculating dates and
times; this example also demonstrates the timestamp template in the captured filenames):

from time import sleep
from picamera import PiCamera
from datetime import datetime, timedelta

def wait():
Calculate the delay to the start of the next hour
next_hour = (datetime.now() + timedelta(hour=1)).replace(

minute=0, second=0, microsecond=0)
delay = (next_hour - datetime.now()).seconds
sleep(delay)

camera = PiCamera()
camera.start_preview()
wait()
for filename in camera.capture_continuous('img{timestamp:%Y-%m-%d-%H-%M}.jpg'):

print('Captured %s' % filename)
wait()

3.7 Capturing in low light

Using similar tricks to those in Capturing consistent images (page 13), the Pi’s camera can capture images in low
light conditions. The primary objective is to set a high gain, and a long exposure time to allow the camera to gather
as much light as possible. However, the shutter_speed (page 119) attribute is constrained by the camera’s

11 https://docs.python.org/3.4/library/datetime.html#module-datetime

14 Chapter 3. Basic Recipes

https://docs.python.org/3.4/library/datetime.html#module-datetime

Picamera 1.13 Documentation, Release 1.13

framerate (page 111) so the first thing we need to do is set a very slow framerate. The following script captures
an image with a 6 second exposure time (the maximum the Pi’s V1 camera module is capable of; the V2 camera
module can manage 10 second exposures):

from picamera import PiCamera
from time import sleep
from fractions import Fraction

Force sensor mode 3 (the long exposure mode), set
the framerate to 1/6fps, the shutter speed to 6s,
and ISO to 800 (for maximum gain)
camera = PiCamera(

resolution=(1280, 720),
framerate=Fraction(1, 6),
sensor_mode=3)

camera.shutter_speed = 6000000
camera.iso = 800
Give the camera a good long time to set gains and
measure AWB (you may wish to use fixed AWB instead)
sleep(30)
camera.exposure_mode = 'off'
Finally, capture an image with a 6s exposure. Due
to mode switching on the still port, this will take
longer than 6 seconds
camera.capture('dark.jpg')

In anything other than dark conditions, the image produced by this script will most likely be completely white or
at least heavily over-exposed.

Note: The Pi’s camera module uses a rolling shutter12. This means that moving subjects may appear distorted if
they move relative to the camera. This effect will be exaggerated by using longer exposure times.

When using long exposures, it is often preferable to use framerate_range (page 113) instead of framerate
(page 111). This allows the camera to vary the framerate on the fly and use shorter framerates where possible
(leading to shorter capture delays). This hasn’t been used in the script above as the shutter speed is forced to 6
seconds (the maximum possible on the V1 camera module) which would make a framerate range pointless.

3.8 Capturing to a network stream

This is a variation of Capturing timelapse sequences (page 14). Here we have two scripts: a server (presumably
on a fast machine) which listens for a connection from the Raspberry Pi, and a client which runs on the Raspberry
Pi and sends a continual stream of images to the server. We’ll use a very simple protocol for communication: first
the length of the image will be sent as a 32-bit integer (in Little Endian13 format), then this will be followed by
the bytes of image data. If the length is 0, this indicates that the connection should be closed as no more images
will be forthcoming. This protocol is illustrated below:

Image
Length
(68702)

Image
Data

Image
Length
(87532)

Image
Data

Image
Length

(0)

4 bytes 68702 bytes 4 bytes 4 bytes87532 bytes

Firstly the server script (which relies on PIL for reading JPEGs, but you could replace this with any other suitable
graphics library, e.g. OpenCV or GraphicsMagick):

12 https://en.wikipedia.org/wiki/Rolling_shutter
13 https://en.wikipedia.org/wiki/Endianness

3.8. Capturing to a network stream 15

https://en.wikipedia.org/wiki/Rolling_shutter
https://en.wikipedia.org/wiki/Endianness

Picamera 1.13 Documentation, Release 1.13

import io
import socket
import struct
from PIL import Image

Start a socket listening for connections on 0.0.0.0:8000 (0.0.0.0 means
all interfaces)
server_socket = socket.socket()
server_socket.bind(('0.0.0.0', 8000))
server_socket.listen(0)

Accept a single connection and make a file-like object out of it
connection = server_socket.accept()[0].makefile('rb')
try:

while True:
Read the length of the image as a 32-bit unsigned int. If the
length is zero, quit the loop
image_len = struct.unpack('<L', connection.read(struct.calcsize('<L')))[0]
if not image_len:

break
Construct a stream to hold the image data and read the image
data from the connection
image_stream = io.BytesIO()
image_stream.write(connection.read(image_len))
Rewind the stream, open it as an image with PIL and do some
processing on it
image_stream.seek(0)
image = Image.open(image_stream)
print('Image is %dx%d' % image.size)
image.verify()
print('Image is verified')

finally:
connection.close()
server_socket.close()

Now for the client side of things, on the Raspberry Pi:

import io
import socket
import struct
import time
import picamera

Connect a client socket to my_server:8000 (change my_server to the
hostname of your server)
client_socket = socket.socket()
client_socket.connect(('my_server', 8000))

Make a file-like object out of the connection
connection = client_socket.makefile('wb')
try:

camera = picamera.PiCamera()
camera.resolution = (640, 480)
Start a preview and let the camera warm up for 2 seconds
camera.start_preview()
time.sleep(2)

Note the start time and construct a stream to hold image data
temporarily (we could write it directly to connection but in this
case we want to find out the size of each capture first to keep
our protocol simple)
start = time.time()

(continues on next page)

16 Chapter 3. Basic Recipes

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

stream = io.BytesIO()
for foo in camera.capture_continuous(stream, 'jpeg'):

Write the length of the capture to the stream and flush to
ensure it actually gets sent
connection.write(struct.pack('<L', stream.tell()))
connection.flush()
Rewind the stream and send the image data over the wire
stream.seek(0)
connection.write(stream.read())
If we've been capturing for more than 30 seconds, quit
if time.time() - start > 30:

break
Reset the stream for the next capture
stream.seek(0)
stream.truncate()

Write a length of zero to the stream to signal we're done
connection.write(struct.pack('<L', 0))

finally:
connection.close()
client_socket.close()

The server script should be run first to ensure there’s a listening socket ready to accept a connection from the client
script.

3.9 Recording video to a file

Recording a video to a file is simple:

import picamera

camera = picamera.PiCamera()
camera.resolution = (640, 480)
camera.start_recording('my_video.h264')
camera.wait_recording(60)
camera.stop_recording()

Note that we use wait_recording() (page 105) in the example above instead of time.sleep()14 which
we’ve been using in the image capture recipes above. The wait_recording() (page 105) method is similar
in that it will pause for the number of seconds specified, but unlike time.sleep()15 it will continually check
for recording errors (e.g. an out of disk space condition) while it is waiting. If we had used time.sleep()16

instead, such errors would only be raised by the stop_recording() (page 105) call (which could be long
after the error actually occurred).

3.10 Recording video to a stream

This is very similar to Recording video to a file (page 17):

from io import BytesIO
from picamera import PiCamera

stream = BytesIO()
camera = PiCamera()
camera.resolution = (640, 480)

(continues on next page)

14 https://docs.python.org/3.4/library/time.html#time.sleep
15 https://docs.python.org/3.4/library/time.html#time.sleep
16 https://docs.python.org/3.4/library/time.html#time.sleep

3.9. Recording video to a file 17

https://docs.python.org/3.4/library/time.html#time.sleep
https://docs.python.org/3.4/library/time.html#time.sleep
https://docs.python.org/3.4/library/time.html#time.sleep

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

camera.start_recording(stream, format='h264', quality=23)
camera.wait_recording(15)
camera.stop_recording()

Here, we’ve set the quality parameter to indicate to the encoder the level of image quality that we’d like it to try
and maintain. The camera’s H.264 encoder is primarily constrained by two parameters:

• bitrate limits the encoder’s output to a certain number of bits per second. The default is 17000000 (17Mbps),
and the maximum value is 25000000 (25Mbps). Higher values give the encoder more “freedom” to encode
at higher qualities. You will likely find that the default doesn’t constrain the encoder at all except at higher
recording resolutions.

• quality tells the encoder what level of image quality to maintain. Values can be between 1 (highest quality)
and 40 (lowest quality), with typical values providing a reasonable trade-off between bandwidth and quality
being between 20 and 25.

As well as using stream classes built into Python (like BytesIO17) you can also construct your own custom
outputs (page 31). This is particularly useful for video recording, as discussed in the linked recipe.

3.11 Recording over multiple files

If you wish split your recording over multiple files, you can use the split_recording() (page 102) method
to accomplish this:

import picamera

camera = picamera.PiCamera(resolution=(640, 480))
camera.start_recording('1.h264')
camera.wait_recording(5)
for i in range(2, 11):

camera.split_recording('%d.h264' % i)
camera.wait_recording(5)

camera.stop_recording()

This should produce 10 video files named 1.h264, 2.h264, etc. each of which is approximately 5 seconds long
(approximately because the split_recording() (page 102) method will only split files at a key-frame).

The record_sequence() (page 101) method can also be used to achieve this with slightly cleaner code:

import picamera

camera = picamera.PiCamera(resolution=(640, 480))
for filename in camera.record_sequence(

'%d.h264' % i for i in range(1, 11)):
camera.wait_recording(5)

Changed in version 1.3: The record_sequence() (page 101) method was introduced in version 1.3

3.12 Recording to a circular stream

This is similar to Recording video to a stream (page 17) but uses a special kind of in-memory stream provided by
the picamera library. The PiCameraCircularIO (page 125) class implements a ring buffer18 based stream,
specifically for video recording. This enables you to keep an in-memory stream containing the last n seconds
of video recorded (where n is determined by the bitrate of the video recording and the size of the ring buffer
underlying the stream).

17 https://docs.python.org/3.4/library/io.html#io.BytesIO
18 https://en.wikipedia.org/wiki/Circular_buffer

18 Chapter 3. Basic Recipes

https://docs.python.org/3.4/library/io.html#io.BytesIO
https://en.wikipedia.org/wiki/Circular_buffer

Picamera 1.13 Documentation, Release 1.13

A typical use-case for this sort of storage is security applications where one wishes to detect motion and only
record to disk the video where motion was detected. This example keeps 20 seconds of video in memory until the
write_now function returns True (in this implementation this is random but one could, for example, replace
this with some sort of motion detection algorithm). Once write_now returns True, the script waits 10 more
seconds (so that the buffer contains 10 seconds of video from before the event, and 10 seconds after) and writes
the resulting video to disk before going back to waiting:

import io
import random
import picamera

def motion_detected():
Randomly return True (like a fake motion detection routine)
return random.randint(0, 10) == 0

camera = picamera.PiCamera()
stream = picamera.PiCameraCircularIO(camera, seconds=20)
camera.start_recording(stream, format='h264')
try:

while True:
camera.wait_recording(1)
if motion_detected():

Keep recording for 10 seconds and only then write the
stream to disk
camera.wait_recording(10)
stream.copy_to('motion.h264')

finally:
camera.stop_recording()

In the above script we use the special copy_to() (page 126) method to copy the stream to a disk file. This
automatically handles details like finding the start of the first key-frame in the circular buffer, and also provides
facilities like writing a specific number of bytes or seconds.

Note: Note that at least 20 seconds of video are in the stream. This is an estimate only; if the H.264 encoder
requires less than the specified bitrate (17Mbps by default) for recording the video, then more than 20 seconds of
video will be available in the stream.

New in version 1.0.

Changed in version 1.11: Added use of the copy_to() (page 126)

3.13 Recording to a network stream

This is similar to Recording video to a stream (page 17) but instead of an in-memory stream like BytesIO19,
we will use a file-like object created from a socket()20. Unlike the example in Capturing to a network stream
(page 15) we don’t need to complicate our network protocol by writing things like the length of images. This time
we’re sending a continual stream of video frames (which necessarily incorporates such information, albeit in a
much more efficient form), so we can simply dump the recording straight to the network socket.

Firstly, the server side script which will simply read the video stream and pipe it to a media player for display:

import socket
import subprocess

Start a socket listening for connections on 0.0.0.0:8000 (0.0.0.0 means
all interfaces)

(continues on next page)

19 https://docs.python.org/3.4/library/io.html#io.BytesIO
20 https://docs.python.org/3.4/library/socket.html#socket.socket

3.13. Recording to a network stream 19

https://docs.python.org/3.4/library/io.html#io.BytesIO
https://docs.python.org/3.4/library/socket.html#socket.socket

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

server_socket = socket.socket()
server_socket.bind(('0.0.0.0', 8000))
server_socket.listen(0)

Accept a single connection and make a file-like object out of it
connection = server_socket.accept()[0].makefile('rb')
try:

Run a viewer with an appropriate command line. Uncomment the mplayer
version if you would prefer to use mplayer instead of VLC
cmdline = ['vlc', '--demux', 'h264', '-']
#cmdline = ['mplayer', '-fps', '25', '-cache', '1024', '-']
player = subprocess.Popen(cmdline, stdin=subprocess.PIPE)
while True:

Repeatedly read 1k of data from the connection and write it to
the media player's stdin
data = connection.read(1024)
if not data:

break
player.stdin.write(data)

finally:
connection.close()
server_socket.close()
player.terminate()

Note: If you run this script on Windows you will probably need to provide a complete path to the VLC or mplayer
executable. If you run this script on Mac OS X, and are using Python installed from MacPorts, please ensure you
have also installed VLC or mplayer from MacPorts.

You will probably notice several seconds of latency with this setup. This is normal and is because media players
buffer several seconds to guard against unreliable network streams. Some media players (notably mplayer in this
case) permit the user to skip to the end of the buffer (press the right cursor key in mplayer), reducing the latency
by increasing the risk that delayed / dropped network packets will interrupt the playback.

Now for the client side script which simply starts a recording over a file-like object created from the network
socket:

import socket
import time
import picamera

Connect a client socket to my_server:8000 (change my_server to the
hostname of your server)
client_socket = socket.socket()
client_socket.connect(('my_server', 8000))

Make a file-like object out of the connection
connection = client_socket.makefile('wb')
try:

camera = picamera.PiCamera()
camera.resolution = (640, 480)
camera.framerate = 24
Start a preview and let the camera warm up for 2 seconds
camera.start_preview()
time.sleep(2)
Start recording, sending the output to the connection for 60
seconds, then stop
camera.start_recording(connection, format='h264')
camera.wait_recording(60)
camera.stop_recording()

(continues on next page)

20 Chapter 3. Basic Recipes

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

finally:
connection.close()
client_socket.close()

It should also be noted that the effect of the above is much more easily achieved (at least on Linux) with a
combination of netcat and the raspivid executable. For example:

on the server
$ nc -l 8000 | vlc --demux h264 -

on the client
raspivid -w 640 -h 480 -t 60000 -o - | nc my_server 8000

However, this recipe does serve as a starting point for video streaming applications. It’s also possible to reverse the
direction of this recipe relatively easily. In this scenario, the Pi acts as the server, waiting for a connection from the
client. When it accepts a connection, it starts streaming video over it for 60 seconds. Another variation (just for
the purposes of demonstration) is that we initialize the camera straight away instead of waiting for a connection
to allow the streaming to start faster on connection:

import socket
import time
import picamera

camera = picamera.PiCamera()
camera.resolution = (640, 480)
camera.framerate = 24

server_socket = socket.socket()
server_socket.bind(('0.0.0.0', 8000))
server_socket.listen(0)

Accept a single connection and make a file-like object out of it
connection = server_socket.accept()[0].makefile('wb')
try:

camera.start_recording(connection, format='h264')
camera.wait_recording(60)
camera.stop_recording()

finally:
connection.close()
server_socket.close()

One advantage of this setup is that no script is needed on the client side - we can simply use VLC with a network
URL:

vlc tcp/h264://my_pi_address:8000/

Note: VLC (or mplayer) will not work for playback on a Pi. Neither is (currently) capable of using the GPU for
decoding, and thus they attempt to perform video decoding on the Pi’s CPU (which is not powerful enough for the
task). You will need to run these applications on a faster machine (though “faster” is a relative term here: even an
Atom powered netbook should be quick enough for the task at non-HD resolutions).

3.14 Overlaying images on the preview

The camera preview system can operate multiple layered renderers simultaneously. While the picamera library
only permits a single renderer to be connected to the camera’s preview port, it does permit additional renderers to
be created which display a static image. These overlaid renderers can be used to create simple user interfaces.

3.14. Overlaying images on the preview 21

Picamera 1.13 Documentation, Release 1.13

Note: Overlay images will not appear in image captures or video recordings. If you need to embed additional
information in the output of the camera, please refer to Overlaying text on the output (page 23).

One difficulty of working with overlay renderers is that they expect unencoded RGB input which is padded up to
the camera’s block size. The camera’s block size is 32x16 so any image data provided to a renderer must have
a width which is a multiple of 32, and a height which is a multiple of 16. The specific RGB format expected is
interleaved unsigned bytes. If all this sounds complicated, don’t worry; it’s quite simple to produce in practice.

The following example demonstrates loading an arbitrary size image with PIL, padding it to the required size, and
producing the unencoded RGB data for the call to add_overlay() (page 96):

import picamera
from PIL import Image
from time import sleep

camera = picamera.PiCamera()
camera.resolution = (1280, 720)
camera.framerate = 24
camera.start_preview()

Load the arbitrarily sized image
img = Image.open('overlay.png')
Create an image padded to the required size with
mode 'RGB'
pad = Image.new('RGB', (

((img.size[0] + 31) // 32) * 32,
((img.size[1] + 15) // 16) * 16,
))

Paste the original image into the padded one
pad.paste(img, (0, 0))

Add the overlay with the padded image as the source,
but the original image's dimensions
o = camera.add_overlay(pad.tobytes(), size=img.size)
By default, the overlay is in layer 0, beneath the
preview (which defaults to layer 2). Here we make
the new overlay semi-transparent, then move it above
the preview
o.alpha = 128
o.layer = 3

Wait indefinitely until the user terminates the script
while True:

sleep(1)

Alternatively, instead of using an image file as the source, you can produce an overlay directly from a numpy
array. In the following example, we construct a numpy array with the same resolution as the screen, then draw a
white cross through the center and overlay it on the preview as a simple cross-hair:

import time
import picamera
import numpy as np

Create an array representing a 1280x720 image of
a cross through the center of the display. The shape of
the array must be of the form (height, width, color)
a = np.zeros((720, 1280, 3), dtype=np.uint8)
a[360, :, :] = 0xff
a[:, 640, :] = 0xff

(continues on next page)

22 Chapter 3. Basic Recipes

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

camera = picamera.PiCamera()
camera.resolution = (1280, 720)
camera.framerate = 24
camera.start_preview()
Add the overlay directly into layer 3 with transparency;
we can omit the size parameter of add_overlay as the
size is the same as the camera's resolution
o = camera.add_overlay(np.getbuffer(a), layer=3, alpha=64)
try:

Wait indefinitely until the user terminates the script
while True:

time.sleep(1)
finally:

camera.remove_overlay(o)

Given that overlaid renderers can be hidden (by moving them below the preview’s layer (page 132) which
defaults to 2), made semi-transparent (with the alpha (page 131) property), and resized so that they don’t fill
the screen (page 132), they can be used to construct simple user interfaces.

New in version 1.8.

3.15 Overlaying text on the output

The camera includes a rudimentary annotation facility which permits up to 255 characters of ASCII text to be
overlaid on all output (including the preview, image captures and video recordings). To achieve this, simply
assign a string to the annotate_text (page 106) attribute:

import picamera
import time

camera = picamera.PiCamera()
camera.resolution = (640, 480)
camera.framerate = 24
camera.start_preview()
camera.annotate_text = 'Hello world!'
time.sleep(2)
Take a picture including the annotation
camera.capture('foo.jpg')

With a little ingenuity, it’s possible to display longer strings:

import picamera
import time
import itertools

s = "This message would be far too long to display normally..."

camera = picamera.PiCamera()
camera.resolution = (640, 480)
camera.framerate = 24
camera.start_preview()
camera.annotate_text = ' ' * 31
for c in itertools.cycle(s):

camera.annotate_text = camera.annotate_text[1:31] + c
time.sleep(0.1)

And of course, it can be used to display (and embed) a timestamp in recordings (this recipe also demonstrates
drawing a background behind the timestamp for contrast with the annotate_background (page 105) at-
tribute):

3.15. Overlaying text on the output 23

Picamera 1.13 Documentation, Release 1.13

import picamera
import datetime as dt

camera = picamera.PiCamera(resolution=(1280, 720), framerate=24)
camera.start_preview()
camera.annotate_background = picamera.Color('black')
camera.annotate_text = dt.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
camera.start_recording('timestamped.h264')
start = dt.datetime.now()
while (dt.datetime.now() - start).seconds < 30:

camera.annotate_text = dt.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
camera.wait_recording(0.2)

camera.stop_recording()

New in version 1.7.

3.16 Controlling the LED

In certain circumstances, you may find the V1 camera module’s red LED a hindrance (the V2 camera module
lacks an LED). For example, in the case of automated close-up wild-life photography, the LED may scare off
animals. It can also cause unwanted reflected red glare with close-up subjects.

One trivial way to deal with this is simply to place some opaque covering on the LED (e.g. blue-tack or electricians
tape). Another method is to use the disable_camera_led option in the boot configuration21.

However, provided you have the RPi.GPIO22 package installed, and provided your Python process is running with
sufficient privileges (typically this means running as root with sudo python), you can also control the LED via
the led (page 116) attribute:

import picamera

camera = picamera.PiCamera()
Turn the camera's LED off
camera.led = False
Take a picture while the LED remains off
camera.capture('foo.jpg')

Note: The camera LED cannot currently be controlled when the module is attached to a Raspberry Pi 3 Model B
as the GPIO that controls the LED has moved to a GPIO expander not directly accessible to the ARM processor.

Warning: Be aware when you first use the LED property it will set the GPIO library to Broadcom (BCM)
mode with GPIO.setmode(GPIO.BCM) and disable warnings with GPIO.setwarnings(False).
The LED cannot be controlled when the library is in BOARD mode.

21 https://www.raspberrypi.org/documentation/configuration/config-txt.md
22 https://pypi.python.org/pypi/RPi.GPIO

24 Chapter 3. Basic Recipes

https://www.raspberrypi.org/documentation/configuration/config-txt.md
https://pypi.python.org/pypi/RPi.GPIO

CHAPTER 4

Advanced Recipes

The following recipes involve advanced techniques and may not be “beginner friendly”. Please feel free to suggest
enhancements or additional recipes.

Warning: When trying out these scripts do not name your file picamera.py. Naming scripts after existing
Python modules will cause errors when you try and import those modules (because Python checks the current
directory before checking other paths).

4.1 Capturing to a numpy array

Since 1.11, picamera can capture directly to any object which supports Python’s buffer protocol (including
numpy’s ndarray23). Simply pass the object as the destination of the capture and the image data will be written
directly to the object. The target object must fulfil various requirements (some of which are dependent on the
version of Python you are using):

1. The buffer object must be writeable (e.g. you cannot capture to a bytes24 object as it is immutable).

2. The buffer object must be large enough to receive all the image data.

3. (Python 2.x only) The buffer object must be 1-dimensional.

4. (Python 2.x only) The buffer object must have byte-sized items.

For example, to capture directly to a three-dimensional numpy ndarray25 (Python 3.x only):

import time
import picamera
import numpy as np

with picamera.PiCamera() as camera:
camera.resolution = (320, 240)
camera.framerate = 24
time.sleep(2)

(continues on next page)

23 https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
24 https://docs.python.org/3.4/library/functions.html#bytes
25 https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

25

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.4/library/functions.html#bytes
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

output = np.empty((240, 320, 3), dtype=np.uint8)
camera.capture(output, 'rgb')

It is also important to note that when outputting to unencoded formats, the camera rounds the requested resolution.
The horizontal resolution is rounded up to the nearest multiple of 32 pixels, while the vertical resolution is rounded
up to the nearest multiple of 16 pixels. For example, if the requested resolution is 100x100, the capture will
actually contain 128x112 pixels worth of data, but pixels beyond 100x100 will be uninitialized.

So, to capture a 100x100 image we first need to provide a 128x112 array, then strip off the uninitialized pixels
afterward. The following example demonstrates this along with the re-shaping necessary under Python 2.x:

import time
import picamera
import numpy as np

with picamera.PiCamera() as camera:
camera.resolution = (100, 100)
camera.framerate = 24
time.sleep(2)
output = np.empty((112 * 128 * 3,), dtype=np.uint8)
camera.capture(output, 'rgb')
output = output.reshape((112, 128, 3))
output = output[:100, :100, :]

Warning: Under certain circumstances (non-resized, non-YUV, video-port captures), the resolution is
rounded to 16x16 blocks instead of 32x16. Adjust your resolution rounding accordingly.

New in version 1.11.

4.2 Capturing to an OpenCV object

This is a variation on Capturing to a numpy array (page 25). OpenCV26 uses numpy arrays as images and defaults
to colors in planar BGR. Hence, the following is all that’s required to capture an OpenCV compatible image:

import time
import picamera
import numpy as np
import cv2

with picamera.PiCamera() as camera:
camera.resolution = (320, 240)
camera.framerate = 24
time.sleep(2)
image = np.empty((240 * 320 * 3,), dtype=np.uint8)
camera.capture(image, 'bgr')
image = image.reshape((240, 320, 3))

Changed in version 1.11: Replaced recipe with direct array capture example.

4.3 Unencoded image capture (YUV format)

If you want images captured without loss of detail (due to JPEG’s lossy compression), you are probably better off
exploring PNG as an alternate image format (PNG uses lossless compression). However, some applications (par-

26 http://opencv.org/

26 Chapter 4. Advanced Recipes

http://opencv.org/

Picamera 1.13 Documentation, Release 1.13

ticularly scientific ones) simply require the image data in numeric form. For this, the 'yuv' format is provided:

import time
import picamera

with picamera.PiCamera() as camera:
camera.resolution = (100, 100)
camera.start_preview()
time.sleep(2)
camera.capture('image.data', 'yuv')

The specific YUV27 format used is YUV42028 (planar). This means that the Y (luminance) values occur first in
the resulting data and have full resolution (one 1-byte Y value for each pixel in the image). The Y values are
followed by the U (chrominance) values, and finally the V (chrominance) values. The UV values have one quarter
the resolution of the Y components (4 1-byte Y values in a square for each 1-byte U and 1-byte V value). This is
illustrated in the diagram below:

It is also important to note that when outputting to unencoded formats, the camera rounds the requested resolution.
The horizontal resolution is rounded up to the nearest multiple of 32 pixels, while the vertical resolution is rounded
up to the nearest multiple of 16 pixels. For example, if the requested resolution is 100x100, the capture will
actually contain 128x112 pixels worth of data, but pixels beyond 100x100 will be uninitialized.

Given that the YUV42029 format contains 1.5 bytes worth of data for each pixel (a 1-byte Y value for each pixel,
and 1-byte U and V values for every 4 pixels), and taking into account the resolution rounding, the size of a
100x100 YUV capture will be:

128.0 100 rounded up to nearest multiple of 32
× 112.0 100 rounded up to nearest multiple of 16
× 1.5 bytes of data per pixel in YUV420 format
21504.0 bytes total (4.1)

The first 14336 bytes of the data (128*112) will be Y values, the next 3584 bytes (128×112÷4) will be U values,
and the final 3584 bytes will be the V values.

The following code demonstrates capturing YUV image data, loading the data into a set of numpy30 arrays, and
converting the data to RGB format in an efficient manner:

from __future__ import division

(continues on next page)

27 https://en.wikipedia.org/wiki/YUV
28 https://en.wikipedia.org/wiki/YUV#Y.E2.80.B2UV420p_.28and_Y.E2.80.B2V12_or_YV12.29_to_RGB888_conversion
29 https://en.wikipedia.org/wiki/YUV#Y.E2.80.B2UV420p_.28and_Y.E2.80.B2V12_or_YV12.29_to_RGB888_conversion
30 http://www.numpy.org/

4.3. Unencoded image capture (YUV format) 27

https://en.wikipedia.org/wiki/YUV
https://en.wikipedia.org/wiki/YUV#Y.E2.80.B2UV420p_.28and_Y.E2.80.B2V12_or_YV12.29_to_RGB888_conversion
https://en.wikipedia.org/wiki/YUV#Y.E2.80.B2UV420p_.28and_Y.E2.80.B2V12_or_YV12.29_to_RGB888_conversion
http://www.numpy.org/

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

import time
import picamera
import numpy as np

width = 100
height = 100
stream = open('image.data', 'w+b')
Capture the image in YUV format
with picamera.PiCamera() as camera:

camera.resolution = (width, height)
camera.start_preview()
time.sleep(2)
camera.capture(stream, 'yuv')

Rewind the stream for reading
stream.seek(0)
Calculate the actual image size in the stream (accounting for rounding
of the resolution)
fwidth = (width + 31) // 32 * 32
fheight = (height + 15) // 16 * 16
Load the Y (luminance) data from the stream
Y = np.fromfile(stream, dtype=np.uint8, count=fwidth*fheight).\

reshape((fheight, fwidth))
Load the UV (chrominance) data from the stream, and double its size
U = np.fromfile(stream, dtype=np.uint8, count=(fwidth//2)*(fheight//2)).\

reshape((fheight//2, fwidth//2)).\
repeat(2, axis=0).repeat(2, axis=1)

V = np.fromfile(stream, dtype=np.uint8, count=(fwidth//2)*(fheight//2)).\
reshape((fheight//2, fwidth//2)).\
repeat(2, axis=0).repeat(2, axis=1)

Stack the YUV channels together, crop the actual resolution, convert to
floating point for later calculations, and apply the standard biases
YUV = np.dstack((Y, U, V))[:height, :width, :].astype(np.float)
YUV[:, :, 0] = YUV[:, :, 0] - 16 # Offset Y by 16
YUV[:, :, 1:] = YUV[:, :, 1:] - 128 # Offset UV by 128
YUV conversion matrix from ITU-R BT.601 version (SDTV)
Y U V
M = np.array([[1.164, 0.000, 1.596], # R

[1.164, -0.392, -0.813], # G
[1.164, 2.017, 0.000]]) # B

Take the dot product with the matrix to produce RGB output, clamp the
results to byte range and convert to bytes
RGB = YUV.dot(M.T).clip(0, 255).astype(np.uint8)

Note: You may note that we are using open()31 in the code above instead of io.open()32 as in the other
examples. This is because numpy’s numpy.fromfile()33 method annoyingly only accepts “real” file objects.

This recipe is now encapsulated in the PiYUVArray (page 154) class in the picamera.array (page 153)
module, which means the same can be achieved as follows:

import time
import picamera
import picamera.array

with picamera.PiCamera() as camera:
with picamera.array.PiYUVArray(camera) as stream:

camera.resolution = (100, 100)

(continues on next page)

31 https://docs.python.org/3.4/library/functions.html#open
32 https://docs.python.org/3.4/library/io.html#io.open
33 https://docs.scipy.org/doc/numpy/reference/generated/numpy.fromfile.html#numpy.fromfile

28 Chapter 4. Advanced Recipes

https://docs.python.org/3.4/library/functions.html#open
https://docs.python.org/3.4/library/io.html#io.open
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fromfile.html#numpy.fromfile

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

camera.start_preview()
time.sleep(2)
camera.capture(stream, 'yuv')
Show size of YUV data
print(stream.array.shape)
Show size of RGB converted data
print(stream.rgb_array.shape)

As of 1.11 you can also capture directly to numpy arrays (see Capturing to a numpy array (page 25)). Due to the
difference in resolution of the Y and UV components, this isn’t directly useful (if you need all three components,
you’re better off using PiYUVArray (page 154) as this rescales the UV components for convenience). However,
if you only require the Y plane you can provide a buffer just large enough for this plane and ignore the error that
occurs when writing to the buffer (picamera will deliberately write as much as it can to the buffer before raising
an exception to support this use-case):

import time
import picamera
import picamera.array
import numpy as np

with picamera.PiCamera() as camera:
camera.resolution = (100, 100)
time.sleep(2)
y_data = np.empty((112, 128), dtype=np.uint8)
try:

camera.capture(y_data, 'yuv')
except IOError:

pass
y_data = y_data[:100, :100]
y_data now contains the Y-plane only

Alternatively, see Unencoded image capture (RGB format) (page 29) for a method of having the camera output
RGB data directly.

Note: Capturing so-called “raw” formats ('yuv', 'rgb', etc.) does not provide the raw bayer data from the
camera’s sensor. Rather, it provides access to the image data after GPU processing, but before format encoding
(JPEG, PNG, etc). Currently, the only method of accessing the raw bayer data is via the bayer parameter to the
capture() (page 97) method. See Raw Bayer data captures (page 48) for more information.

Changed in version 1.0: The raw_format (page 117) attribute is now deprecated, as is the 'raw' format
specification for the capture() (page 97) method. Simply use the 'yuv' format instead, as shown in the code
above.

Changed in version 1.5: Added note about new picamera.array (page 153) module.

Changed in version 1.11: Added instructions for direct array capture.

4.4 Unencoded image capture (RGB format)

The RGB format is rather larger than the YUV34 format discussed in the section above, but is more useful for most
analyses. To have the camera produce output in RGB35 format, you simply need to specify 'rgb' as the format
for the capture() (page 97) method instead:

34 https://en.wikipedia.org/wiki/YUV
35 https://en.wikipedia.org/wiki/RGB

4.4. Unencoded image capture (RGB format) 29

https://en.wikipedia.org/wiki/YUV
https://en.wikipedia.org/wiki/RGB

Picamera 1.13 Documentation, Release 1.13

import time
import picamera

with picamera.PiCamera() as camera:
camera.resolution = (100, 100)
camera.start_preview()
time.sleep(2)
camera.capture('image.data', 'rgb')

The size of RGB36 data can be calculated similarly to YUV37 captures. Firstly round the resolution appropriately
(see Unencoded image capture (YUV format) (page 26) for the specifics), then multiply the number of pixels by
3 (1 byte of red, 1 byte of green, and 1 byte of blue intensity). Hence, for a 100x100 capture, the amount of data
produced is:

128.0 100 rounded up to nearest multiple of 32
× 112.0 100 rounded up to nearest multiple of 16
× 3.0 bytes of data per pixel in RGB format
43008.0 bytes total (4.2)

Warning: Under certain circumstances (non-resized, non-YUV, video-port captures), the resolution is
rounded to 16x16 blocks instead of 32x16. Adjust your resolution rounding accordingly.

The resulting RGB38 data is interleaved. That is to say that the red, green and blue values for a given pixel are
grouped together, in that order. The first byte of the data is the red value for the pixel at (0, 0), the second byte
is the green value for the same pixel, and the third byte is the blue value for that pixel. The fourth byte is the red
value for the pixel at (1, 0), and so on.

As the planes in RGB39 data are all equally sized (in contrast to YUV42040) it is trivial to capture directly into a
numpy array (Python 3.x only; see Capturing to a numpy array (page 25) for Python 2.x instructions):

import time
import picamera
import picamera.array
import numpy as np

with picamera.PiCamera() as camera:
camera.resolution = (100, 100)
time.sleep(2)
image = np.empty((128, 112, 3), dtype=np.uint8)
camera.capture(image, 'rgb')
image = image[:100, :100]

Note: RGB captures from the still port do not work at the full resolution of the camera (they result in an out of
memory error). Either use YUV captures, or capture from the video port if you require full resolution.

Changed in version 1.0: The raw_format (page 117) attribute is now deprecated, as is the 'raw' format
specification for the capture() (page 97) method. Simply use the 'rgb' format instead, as shown in the code
above.

Changed in version 1.5: Added note about new picamera.array (page 153) module.

Changed in version 1.11: Added instructions for direct array capture.

36 https://en.wikipedia.org/wiki/RGB
37 https://en.wikipedia.org/wiki/YUV
38 https://en.wikipedia.org/wiki/RGB
39 https://en.wikipedia.org/wiki/RGB
40 https://en.wikipedia.org/wiki/YUV#Y.E2.80.B2UV420p_.28and_Y.E2.80.B2V12_or_YV12.29_to_RGB888_conversion

30 Chapter 4. Advanced Recipes

https://en.wikipedia.org/wiki/RGB
https://en.wikipedia.org/wiki/YUV
https://en.wikipedia.org/wiki/RGB
https://en.wikipedia.org/wiki/RGB
https://en.wikipedia.org/wiki/YUV#Y.E2.80.B2UV420p_.28and_Y.E2.80.B2V12_or_YV12.29_to_RGB888_conversion

Picamera 1.13 Documentation, Release 1.13

4.5 Custom outputs

All methods in the picamera library which accept a filename also accept file-like objects. Typically, this is only
used with actual file objects, or with memory streams (like io.BytesIO41). However, building a custom output
object is extremely easy and in certain cases very useful. A file-like object (as far as picamera is concerned) is
simply an object with a write method which must accept a single parameter consisting of a byte-string, and
which can optionally return the number of bytes written. The object can optionally implement a flush method
(which has no parameters), which will be called at the end of output.

Custom outputs are particularly useful with video recording as the custom output’s write method will be called
(at least) once for every frame that is output, allowing you to implement code that reacts to each and every frame
without going to the bother of a full custom encoder (page 47). However, one should bear in mind that because
the write method is called so frequently, its implementation must be sufficiently rapid that it doesn’t stall the
encoder (it must perform its processing and return before the next write is due to arrive if you wish to avoid
dropping frames).

The following trivial example demonstrates an incredibly simple custom output which simply throws away the
output while counting the number of bytes that would have been written and prints this at the end of the output:

import picamera

class MyOutput(object):
def __init__(self):

self.size = 0

def write(self, s):
self.size += len(s)

def flush(self):
print('%d bytes would have been written' % self.size)

with picamera.PiCamera() as camera:
camera.resolution = (640, 480)
camera.framerate = 60
camera.start_recording(MyOutput(), format='h264')
camera.wait_recording(10)
camera.stop_recording()

The following example shows how to use a custom output to construct a crude motion detection system. We
construct a custom output object which is used as the destination for motion vector data (this is particularly simple
as motion vector data always arrives as single chunks; frame data by contrast sometimes arrives in several separate
chunks). The output object doesn’t actually write the motion data anywhere; instead it loads it into a numpy array
and analyses whether there are any significantly large vectors in the data, printing a message to the console if there
are. As we are not concerned with keeping the actual video output in this example, we use /dev/null as the
destination for the video data:

from __future__ import division

import picamera
import numpy as np

motion_dtype = np.dtype([
('x', 'i1'),
('y', 'i1'),
('sad', 'u2'),
])

class MyMotionDetector(object):
def __init__(self, camera):

(continues on next page)

41 https://docs.python.org/3.4/library/io.html#io.BytesIO

4.5. Custom outputs 31

https://docs.python.org/3.4/library/io.html#io.BytesIO

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

width, height = camera.resolution
self.cols = (width + 15) // 16
self.cols += 1 # there's always an extra column
self.rows = (height + 15) // 16

def write(self, s):
Load the motion data from the string to a numpy array
data = np.fromstring(s, dtype=motion_dtype)
Re-shape it and calculate the magnitude of each vector
data = data.reshape((self.rows, self.cols))
data = np.sqrt(

np.square(data['x'].astype(np.float)) +
np.square(data['y'].astype(np.float))
).clip(0, 255).astype(np.uint8)

If there're more than 10 vectors with a magnitude greater
than 60, then say we've detected motion
if (data > 60).sum() > 10:

print('Motion detected!')
Pretend we wrote all the bytes of s
return len(s)

with picamera.PiCamera() as camera:
camera.resolution = (640, 480)
camera.framerate = 30
camera.start_recording(

Throw away the video data, but make sure we're using H.264
'/dev/null', format='h264',
Record motion data to our custom output object
motion_output=MyMotionDetector(camera)
)

camera.wait_recording(30)
camera.stop_recording()

You may wish to investigate the classes in the picamera.array (page 153) module which implement several
custom outputs for analysis of data with numpy. In particular, the PiMotionAnalysis (page 158) class can be
used to remove much of the boiler plate code from the recipe above:

import picamera
import picamera.array
import numpy as np

class MyMotionDetector(picamera.array.PiMotionAnalysis):
def analyse(self, a):

a = np.sqrt(
np.square(a['x'].astype(np.float)) +
np.square(a['y'].astype(np.float))
).clip(0, 255).astype(np.uint8)

If there're more than 10 vectors with a magnitude greater
than 60, then say we've detected motion
if (a > 60).sum() > 10:

print('Motion detected!')

with picamera.PiCamera() as camera:
camera.resolution = (640, 480)
camera.framerate = 30
camera.start_recording(

'/dev/null', format='h264',
motion_output=MyMotionDetector(camera)
)

camera.wait_recording(30)
camera.stop_recording()

32 Chapter 4. Advanced Recipes

Picamera 1.13 Documentation, Release 1.13

New in version 1.5.

4.6 Unconventional file outputs

As noted in prior sections, picamera accepts a wide variety of things as an output:

• A string, which will be treated as a filename.

• A file-like object, e.g. as returned by open()42.

• A custom output (page 31).

• Any mutable object that implements the buffer interface.

The simplest of these, the filename, hides a certain amount of complexity. It can be important to understand
exactly how picamera treats files, especially when dealing with “unconventional” files (e.g. pipes, FIFOs, etc.)

When given a filename, picamera does the following:

1. Opens the specified file with the 'wb' mode, i.e. open for writing, truncating the file first, in binary mode.

2. The file is opened with a larger-than-normal buffer size, specifically 64Kb. A large buffer size is utilized
because it improves performance and system load with the majority use-case, i.e. sequentially writing video
to the disk.

3. The requested data (image captures, video recording, etc.) is written to the open file.

4. Finally, the file is flushed and closed. Note that this is the only circumstance in which picamera will presume
to close the output for you, because picamera opened the output for you.

As noted above, this fits the majority use case (sequentially writing video to a file) very well. However, if you
are piping data to another process via a FIFO (which picamera will simply treat as any other file), you may wish
to avoid all the buffering. In this case, you can simply open the output yourself with no buffering. As noted
above, you will then be responsible for closing the output when you are finished with it (you opened it, so the
responsibility for closing it is yours as well).

For example:

import io
import os
import picamera

with picamera.PiCamera(resolution='VGA') as camera:
os.mkfifo('video_fifo')
f = io.open('video_fifo', 'wb', buffering=0)
try:

camera.start_recording(f, format='h264')
camera.wait_recording(10)
camera.stop_recording()

finally:
f.close()
os.unlink('video_fifo')

4.7 Rapid capture and processing

The camera is capable of capturing a sequence of images extremely rapidly by utilizing its video-capture capa-
bilities with a JPEG encoder (via the use_video_port parameter). However, there are several things to note about
using this technique:

• When using video-port based capture only the video recording area is captured; in some cases this may be
smaller than the normal image capture area (see discussion in Sensor Modes (page 75)).

42 https://docs.python.org/3.4/library/functions.html#open

4.6. Unconventional file outputs 33

https://docs.python.org/3.4/library/functions.html#open

Picamera 1.13 Documentation, Release 1.13

• No Exif information is embedded in JPEG images captured through the video-port.

• Captures typically appear “grainier” with this technique. Captures from the still port use a slower, more
intensive denoise algorithm.

All capture methods support the use_video_port option, but the methods differ in their ability to rapidly capture
sequential frames. So, whilst capture() (page 97) and capture_continuous() (page 98) both support
use_video_port, capture_sequence() (page 100) is by far the fastest method (because it does not re-initialize
an encoder prior to each capture). Using this method, the author has managed 30fps JPEG captures at a resolution
of 1024x768.

By default, capture_sequence() (page 100) is particularly suited to capturing a fixed number of frames
rapidly, as in the following example which captures a “burst” of 5 images:

import time
import picamera

with picamera.PiCamera() as camera:
camera.resolution = (1024, 768)
camera.framerate = 30
camera.start_preview()
time.sleep(2)
camera.capture_sequence([

'image1.jpg',
'image2.jpg',
'image3.jpg',
'image4.jpg',
'image5.jpg',
], use_video_port=True)

We can refine this slightly by using a generator expression to provide the filenames for processing instead of
specifying every single filename manually:

import time
import picamera

frames = 60

with picamera.PiCamera() as camera:
camera.resolution = (1024, 768)
camera.framerate = 30
camera.start_preview()
Give the camera some warm-up time
time.sleep(2)
start = time.time()
camera.capture_sequence([

'image%02d.jpg' % i
for i in range(frames)
], use_video_port=True)

finish = time.time()
print('Captured %d frames at %.2ffps' % (

frames,
frames / (finish - start)))

However, this still doesn’t let us capture an arbitrary number of frames until some condition is satisfied. To
do this we need to use a generator function to provide the list of filenames (or more usefully, streams) to the
capture_sequence() (page 100) method:

import time
import picamera

frames = 60

(continues on next page)

34 Chapter 4. Advanced Recipes

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

def filenames():
frame = 0
while frame < frames:

yield 'image%02d.jpg' % frame
frame += 1

with picamera.PiCamera(resolution='720p', framerate=30) as camera:
camera.start_preview()
Give the camera some warm-up time
time.sleep(2)
start = time.time()
camera.capture_sequence(filenames(), use_video_port=True)
finish = time.time()

print('Captured %d frames at %.2ffps' % (
frames,
frames / (finish - start)))

The major issue with capturing this rapidly is firstly that the Raspberry Pi’s IO bandwidth is extremely limited and
secondly that, as a format, JPEG is considerably less efficient than the H.264 video format (which is to say that,
for the same number of bytes, H.264 will provide considerably better quality over the same number of frames). At
higher resolutions (beyond 800x600) you are likely to find you cannot sustain 30fps captures to the Pi’s SD card
for very long (before exhausting the disk cache).

If you are intending to perform processing on the frames after capture, you may be better off just capturing video
and decoding frames from the resulting file rather than dealing with individual JPEG captures. Thankfully this
is relatively easy as the JPEG format has a simple magic number43 (FF D8). This means we can use a custom
output (page 31) to separate the frames out of an MJPEG video recording by inspecting the first two bytes of each
buffer:

import io
import time
import picamera

class SplitFrames(object):
def __init__(self):

self.frame_num = 0
self.output = None

def write(self, buf):
if buf.startswith(b'\xff\xd8'):

Start of new frame; close the old one (if any) and
open a new output
if self.output:

self.output.close()
self.frame_num += 1
self.output = io.open('image%02d.jpg' % self.frame_num, 'wb')

self.output.write(buf)

with picamera.PiCamera(resolution='720p', framerate=30) as camera:
camera.start_preview()
Give the camera some warm-up time
time.sleep(2)
output = SplitFrames()
start = time.time()
camera.start_recording(output, format='mjpeg')
camera.wait_recording(2)
camera.stop_recording()
finish = time.time()

print('Captured %d frames at %.2ffps' % (

(continues on next page)

43 https://en.wikipedia.org/wiki/Magic_number_(programming)#Magic_numbers_in_files

4.7. Rapid capture and processing 35

https://en.wikipedia.org/wiki/Magic_number_(programming)#Magic_numbers_in_files

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

output.frame_num,
output.frame_num / (finish - start)))

So far, we’ve just saved the captured frames to disk. This is fine if you’re intending to process later with another
script, but what if we want to perform all processing within the current script? In this case, we may not need to
involve the disk (or network) at all. We can set up a pool of parallel threads to accept and process image streams
as captures come in:

import io
import time
import threading
import picamera

class ImageProcessor(threading.Thread):
def __init__(self, owner):

super(ImageProcessor, self).__init__()
self.stream = io.BytesIO()
self.event = threading.Event()
self.terminated = False
self.owner = owner
self.start()

def run(self):
This method runs in a separate thread
while not self.terminated:

Wait for an image to be written to the stream
if self.event.wait(1):

try:
self.stream.seek(0)
Read the image and do some processing on it
#Image.open(self.stream)
#...
#...
Set done to True if you want the script to terminate
at some point
#self.owner.done=True

finally:
Reset the stream and event
self.stream.seek(0)
self.stream.truncate()
self.event.clear()
Return ourselves to the available pool
with self.owner.lock:

self.owner.pool.append(self)

class ProcessOutput(object):
def __init__(self):

self.done = False
Construct a pool of 4 image processors along with a lock
to control access between threads
self.lock = threading.Lock()
self.pool = [ImageProcessor(self) for i in range(4)]
self.processor = None

def write(self, buf):
if buf.startswith(b'\xff\xd8'):

New frame; set the current processor going and grab
a spare one
if self.processor:

self.processor.event.set()
with self.lock:

(continues on next page)

36 Chapter 4. Advanced Recipes

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

if self.pool:
self.processor = self.pool.pop()

else:
No processor's available, we'll have to skip
this frame; you may want to print a warning
here to see whether you hit this case
self.processor = None

if self.processor:
self.processor.stream.write(buf)

def flush(self):
When told to flush (this indicates end of recording), shut
down in an orderly fashion. First, add the current processor
back to the pool
if self.processor:

with self.lock:
self.pool.append(self.processor)
self.processor = None

Now, empty the pool, joining each thread as we go
while True:

with self.lock:
try:

proc = self.pool.pop()
except IndexError:

pass # pool is empty
proc.terminated = True
proc.join()

with picamera.PiCamera(resolution='VGA') as camera:
camera.start_preview()
time.sleep(2)
output = ProcessOutput()
camera.start_recording(output, format='mjpeg')
while not output.done:

camera.wait_recording(1)
camera.stop_recording()

4.8 Unencoded video capture

Just as unencoded RGB data can be captured as images, the Pi’s camera module can also capture an unencoded
stream of RGB (or YUV) video data. Combining this with the methods presented in Custom outputs (page 31)
(via the classes from picamera.array (page 153)), we can produce a fairly rapid color detection script:

import picamera
import numpy as np
from picamera.array import PiRGBAnalysis
from picamera.color import Color

class MyColorAnalyzer(PiRGBAnalysis):
def __init__(self, camera):

super(MyColorAnalyzer, self).__init__(camera)
self.last_color = ''

def analyze(self, a):
Convert the average color of the pixels in the middle box
c = Color(

r=int(np.mean(a[30:60, 60:120, 0])),
g=int(np.mean(a[30:60, 60:120, 1])),

(continues on next page)

4.8. Unencoded video capture 37

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

b=int(np.mean(a[30:60, 60:120, 2]))
)

Convert the color to hue, saturation, lightness
h, l, s = c.hls
c = 'none'
if s > 1/3:

if h > 8/9 or h < 1/36:
c = 'red'

elif 5/9 < h < 2/3:
c = 'blue'

elif 5/36 < h < 4/9:
c = 'green'

If the color has changed, update the display
if c != self.last_color:

self.camera.annotate_text = c
self.last_color = c

with picamera.PiCamera(resolution='160x90', framerate=24) as camera:
Fix the camera's white-balance gains
camera.awb_mode = 'off'
camera.awb_gains = (1.4, 1.5)
Draw a box over the area we're going to watch
camera.start_preview(alpha=128)
box = np.zeros((96, 160, 3), dtype=np.uint8)
box[30:60, 60:120, :] = 0x80
camera.add_overlay(memoryview(box), size=(160, 90), layer=3, alpha=64)
Construct the analysis output and start recording data to it
with MyColorAnalyzer(camera) as analyzer:

camera.start_recording(analyzer, 'rgb')
try:

while True:
camera.wait_recording(1)

finally:
camera.stop_recording()

4.9 Rapid capture and streaming

Following on from Rapid capture and processing (page 33), we can combine the video capture technique with
Capturing to a network stream (page 15). The server side script doesn’t change (it doesn’t really care what
capture technique is being used - it just reads JPEGs off the wire). The changes to the client side script can be
minimal at first - just set use_video_port to True in the capture_continuous() (page 98) call:

import io
import socket
import struct
import time
import picamera

client_socket = socket.socket()
client_socket.connect(('my_server', 8000))
connection = client_socket.makefile('wb')
try:

with picamera.PiCamera() as camera:
camera.resolution = (640, 480)
camera.framerate = 30
time.sleep(2)
start = time.time()
count = 0

(continues on next page)

38 Chapter 4. Advanced Recipes

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

stream = io.BytesIO()
Use the video-port for captures...
for foo in camera.capture_continuous(stream, 'jpeg',

use_video_port=True):
connection.write(struct.pack('<L', stream.tell()))
connection.flush()
stream.seek(0)
connection.write(stream.read())
count += 1
if time.time() - start > 30:

break
stream.seek(0)
stream.truncate()

connection.write(struct.pack('<L', 0))
finally:

connection.close()
client_socket.close()
finish = time.time()

print('Sent %d images in %d seconds at %.2ffps' % (
count, finish-start, count / (finish-start)))

Using this technique, the author can manage about 19fps of streaming at 640x480. However, utilizing the MJPEG
splitting demonstrated in Rapid capture and processing (page 33) we can manage much faster:

import io
import socket
import struct
import time
import picamera

class SplitFrames(object):
def __init__(self, connection):

self.connection = connection
self.stream = io.BytesIO()
self.count = 0

def write(self, buf):
if buf.startswith(b'\xff\xd8'):

Start of new frame; send the old one's length
then the data
size = self.stream.tell()
if size > 0:

self.connection.write(struct.pack('<L', size))
self.connection.flush()
self.stream.seek(0)
self.connection.write(self.stream.read(size))
self.count += 1
self.stream.seek(0)

self.stream.write(buf)

client_socket = socket.socket()
client_socket.connect(('my_server', 8000))
connection = client_socket.makefile('wb')
try:

output = SplitFrames(connection)
with picamera.PiCamera(resolution='VGA', framerate=30) as camera:

time.sleep(2)
start = time.time()
camera.start_recording(output, format='mjpeg')
camera.wait_recording(30)
camera.stop_recording()

(continues on next page)

4.9. Rapid capture and streaming 39

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

Write the terminating 0-length to the connection to let the
server know we're done
connection.write(struct.pack('<L', 0))

finally:
connection.close()
client_socket.close()
finish = time.time()

print('Sent %d images in %d seconds at %.2ffps' % (
output.count, finish-start, output.count / (finish-start)))

The above script achieves 30fps with ease.

4.10 Web streaming

Streaming video over the web is surprisingly complicated. At the time of writing, there are still no video standards
that are universally supported by all web browsers on all platforms. Furthermore, HTTP was originally designed
as a one-shot protocol for serving web-pages. Since its invention, various additions have been bolted on to cater for
its ever increasing use cases (file downloads, resumption, streaming, etc.) but the fact remains there’s no “simple”
solution for video streaming at the moment.

If you want to have a play with streaming a “real” video format (specifically, MPEG1) you may want to have a
look at the pistreaming44 demo. However, for the purposes of this recipe we’ll be using a much simpler format:
MJPEG. The following script uses Python’s built-in http.server45 module to make a simple video streaming
server:

import io
import picamera
import logging
import socketserver
from threading import Condition
from http import server

PAGE="""\
<html>
<head>
<title>picamera MJPEG streaming demo</title>
</head>
<body>
<h1>PiCamera MJPEG Streaming Demo</h1>

</body>
</html>
"""

class StreamingOutput(object):
def __init__(self):

self.frame = None
self.buffer = io.BytesIO()
self.condition = Condition()

def write(self, buf):
if buf.startswith(b'\xff\xd8'):

New frame, copy the existing buffer's content and notify all
clients it's available
self.buffer.truncate()
with self.condition:

(continues on next page)

44 https://github.com/waveform80/pistreaming/
45 https://docs.python.org/3.4/library/http.server.html#module-http.server

40 Chapter 4. Advanced Recipes

https://github.com/waveform80/pistreaming/
https://docs.python.org/3.4/library/http.server.html#module-http.server

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

self.frame = self.buffer.getvalue()
self.condition.notify_all()

self.buffer.seek(0)
return self.buffer.write(buf)

class StreamingHandler(server.BaseHTTPRequestHandler):
def do_GET(self):

if self.path == '/':
self.send_response(301)
self.send_header('Location', '/index.html')
self.end_headers()

elif self.path == '/index.html':
content = PAGE.encode('utf-8')
self.send_response(200)
self.send_header('Content-Type', 'text/html')
self.send_header('Content-Length', len(content))
self.end_headers()
self.wfile.write(content)

elif self.path == '/stream.mjpg':
self.send_response(200)
self.send_header('Age', 0)
self.send_header('Cache-Control', 'no-cache, private')
self.send_header('Pragma', 'no-cache')
self.send_header('Content-Type', 'multipart/x-mixed-replace;

→˓boundary=FRAME')
self.end_headers()
try:

while True:
with output.condition:

output.condition.wait()
frame = output.frame

self.wfile.write(b'--FRAME\r\n')
self.send_header('Content-Type', 'image/jpeg')
self.send_header('Content-Length', len(frame))
self.end_headers()
self.wfile.write(frame)
self.wfile.write(b'\r\n')

except Exception as e:
logging.warning(

'Removed streaming client %s: %s',
self.client_address, str(e))

else:
self.send_error(404)
self.end_headers()

class StreamingServer(socketserver.ThreadingMixIn, server.HTTPServer):
allow_reuse_address = True
daemon_threads = True

with picamera.PiCamera(resolution='640x480', framerate=24) as camera:
output = StreamingOutput()
camera.start_recording(output, format='mjpeg')
try:

address = ('', 8000)
server = StreamingServer(address, StreamingHandler)
server.serve_forever()

finally:
camera.stop_recording()

Once the script is running, visit http://your-pi-address:8000/ with your web-browser to view the
video stream.

4.10. Web streaming 41

Picamera 1.13 Documentation, Release 1.13

Note: This recipe assumes Python 3.x (the http.server module was named SimpleHTTPServer in
Python 2.x)

4.11 Capturing images whilst recording

The camera is capable of capturing still images while it is recording video. However, if one attempts this using the
stills capture mode, the resulting video will have dropped frames during the still image capture. This is because
images captured via the still port require a mode change, causing the dropped frames (this is the flicker to a higher
resolution that one sees when capturing while a preview is running).

However, if the use_video_port parameter is used to force a video-port based image capture (see Rapid capture
and processing (page 33)) then the mode change does not occur, and the resulting video should not have dropped
frames, assuming the image can be produced before the next video frame is due:

import picamera

with picamera.PiCamera() as camera:
camera.resolution = (800, 600)
camera.start_preview()
camera.start_recording('foo.h264')
camera.wait_recording(10)
camera.capture('foo.jpg', use_video_port=True)
camera.wait_recording(10)
camera.stop_recording()

The above code should produce a 20 second video with no dropped frames, and a still frame from 10 seconds into
the video. Higher resolutions or non-JPEG image formats may still cause dropped frames (only JPEG encoding is
hardware accelerated).

4.12 Recording at multiple resolutions

The camera is capable of recording multiple streams at different resolutions simultaneously by use of the video
splitter. This is probably most useful for performing analysis on a low-resolution stream, while simultaneously
recording a high resolution stream for storage or viewing.

The following simple recipe demonstrates using the splitter_port parameter of the start_recording()
(page 103) method to begin two simultaneous recordings, each with a different resolution:

import picamera

with picamera.PiCamera() as camera:
camera.resolution = (1024, 768)
camera.framerate = 30
camera.start_recording('highres.h264')
camera.start_recording('lowres.h264', splitter_port=2, resize=(320, 240))
camera.wait_recording(30)
camera.stop_recording(splitter_port=2)
camera.stop_recording()

There are 4 splitter ports in total that can be used (numbered 0, 1, 2, and 3). The video recording methods default
to using splitter port 1, while the image capture methods default to splitter port 0 (when the use_video_port
parameter is also True). A splitter port cannot be simultaneously used for video recording and image capture
so you are advised to avoid splitter port 0 for video recordings unless you never intend to capture images whilst
recording.

New in version 1.3.

42 Chapter 4. Advanced Recipes

Picamera 1.13 Documentation, Release 1.13

4.13 Recording motion vector data

The Pi’s camera is capable of outputting the motion vector estimates that the camera’s H.264 encoder calculates
while generating compressed video. These can be directed to a separate output file (or file-like object) with the
motion_output parameter of the start_recording() (page 103) method. Like the normal output parameter
this accepts a string representing a filename, or a file-like object:

import picamera

with picamera.PiCamera() as camera:
camera.resolution = (640, 480)
camera.framerate = 30
camera.start_recording('motion.h264', motion_output='motion.data')
camera.wait_recording(10)
camera.stop_recording()

Motion data is calculated at the macro-block46 level (an MPEG macro-block represents a 16x16 pixel region of
the frame), and includes one extra column of data. Hence, if the camera’s resolution is 640x480 (as in the example
above) there will be 41 columns of motion data ((640÷ 16) + 1), in 30 rows (480÷ 16).

Motion data values are 4-bytes long, consisting of a signed 1-byte x vector, a signed 1-byte y vector, and an
unsigned 2-byte SAD (Sum of Absolute Differences47) value for each macro-block. Hence in the example above,
each frame will generate 4920 bytes of motion data (41 × 30 × 4). Assuming the data contains 300 frames (in
practice it may contain a few more) the motion data should be 1,476,000 bytes in total.

The following code demonstrates loading the motion data into a three-dimensional numpy array. The first dimen-
sion represents the frame, with the latter two representing rows and finally columns. A structured data-type is used
for the array permitting easy access to x, y, and SAD values:

from __future__ import division

import numpy as np

width = 640
height = 480
cols = (width + 15) // 16
cols += 1 # there's always an extra column
rows = (height + 15) // 16

motion_data = np.fromfile(
'motion.data', dtype=[

('x', 'i1'),
('y', 'i1'),
('sad', 'u2'),
])

frames = motion_data.shape[0] // (cols * rows)
motion_data = motion_data.reshape((frames, rows, cols))

Access the data for the first frame
motion_data[0]

Access just the x-vectors from the fifth frame
motion_data[4]['x']

Access SAD values for the tenth frame
motion_data[9]['sad']

You can calculate the amount of motion the vector represents simply by calculating the magnitude of the vector48

46 https://en.wikipedia.org/wiki/Macroblock
47 https://en.wikipedia.org/wiki/Sum_of_absolute_differences
48 https://en.wikipedia.org/wiki/Magnitude_%28mathematics%29#Euclidean_vector_space

4.13. Recording motion vector data 43

https://en.wikipedia.org/wiki/Macroblock
https://en.wikipedia.org/wiki/Sum_of_absolute_differences
https://en.wikipedia.org/wiki/Magnitude_%28mathematics%29#Euclidean_vector_space

Picamera 1.13 Documentation, Release 1.13

with Pythagoras’ theorem. The SAD (Sum of Absolute Differences49) value can be used to determine how well
the encoder thinks the vector represents the original reference frame.

The following code extends the example above to use PIL to produce a PNG image from the magnitude of each
frame’s motion vectors:

from __future__ import division

import numpy as np
from PIL import Image

width = 640
height = 480
cols = (width + 15) // 16
cols += 1
rows = (height + 15) // 16

m = np.fromfile(
'motion.data', dtype=[

('x', 'i1'),
('y', 'i1'),
('sad', 'u2'),
])

frames = m.shape[0] // (cols * rows)
m = m.reshape((frames, rows, cols))

for frame in range(frames):
data = np.sqrt(

np.square(m[frame]['x'].astype(np.float)) +
np.square(m[frame]['y'].astype(np.float))
).clip(0, 255).astype(np.uint8)

img = Image.fromarray(data)
filename = 'frame%03d.png' % frame
print('Writing %s' % filename)
img.save(filename)

You may wish to investigate the PiMotionArray (page 156) and PiMotionAnalysis (page 158) classes in
the picamera.array (page 153) module which simplifies the above recipes to the following:

import numpy as np
import picamera
import picamera.array
from PIL import Image

with picamera.PiCamera() as camera:
with picamera.array.PiMotionArray(camera) as stream:

camera.resolution = (640, 480)
camera.framerate = 30
camera.start_recording('/dev/null', format='h264', motion_output=stream)
camera.wait_recording(10)
camera.stop_recording()
for frame in range(stream.array.shape[0]):

data = np.sqrt(
np.square(stream.array[frame]['x'].astype(np.float)) +
np.square(stream.array[frame]['y'].astype(np.float))
).clip(0, 255).astype(np.uint8)

img = Image.fromarray(data)
filename = 'frame%03d.png' % frame
print('Writing %s' % filename)
img.save(filename)

The following command line can be used to generate an animation from the generated PNGs with ffmpeg (this

49 https://en.wikipedia.org/wiki/Sum_of_absolute_differences

44 Chapter 4. Advanced Recipes

https://en.wikipedia.org/wiki/Sum_of_absolute_differences

Picamera 1.13 Documentation, Release 1.13

will take a very long time on the Pi so you may wish to transfer the images to a faster machine for this step):

avconv -r 30 -i frame%03d.png -filter:v scale=640:480 -c:v libx264 motion.mp4

Finally, as a demonstration of what can be accomplished with motion vectors, here’s a gesture detection system:

import os
import numpy as np
import picamera
from picamera.array import PiMotionAnalysis

class GestureDetector(PiMotionAnalysis):
QUEUE_SIZE = 10 # the number of consecutive frames to analyze
THRESHOLD = 4.0 # the minimum average motion required in either axis

def __init__(self, camera):
super(GestureDetector, self).__init__(camera)
self.x_queue = np.zeros(self.QUEUE_SIZE, dtype=np.float)
self.y_queue = np.zeros(self.QUEUE_SIZE, dtype=np.float)
self.last_move = ''

def analyze(self, a):
Roll the queues and overwrite the first element with a new
mean (equivalent to pop and append, but faster)
self.x_queue[1:] = self.x_queue[:-1]
self.y_queue[1:] = self.y_queue[:-1]
self.x_queue[0] = a['x'].mean()
self.y_queue[0] = a['y'].mean()
Calculate the mean of both queues
x_mean = self.x_queue.mean()
y_mean = self.y_queue.mean()
Convert left/up to -1, right/down to 1, and movement below
the threshold to 0
x_move = (

'' if abs(x_mean) < self.THRESHOLD else
'left' if x_mean < 0.0 else
'right')

y_move = (
'' if abs(y_mean) < self.THRESHOLD else
'down' if y_mean < 0.0 else
'up')

Update the display
movement = ('%s %s' % (x_move, y_move)).strip()
if movement != self.last_move:

self.last_move = movement
if movement:

print(movement)

with picamera.PiCamera(resolution='VGA', framerate=24) as camera:
with GestureDetector(camera) as detector:

camera.start_recording(
os.devnull, format='h264', motion_output=detector)

try:
while True:

camera.wait_recording(1)
finally:

camera.stop_recording()

Within a few inches of the camera, move your hand up, down, left, and right, parallel to the camera and you should
see the direction displayed on the console.

New in version 1.5.

4.13. Recording motion vector data 45

Picamera 1.13 Documentation, Release 1.13

4.14 Splitting to/from a circular stream

This example builds on the one in Recording to a circular stream (page 18) and the one in Capturing
images whilst recording (page 42) to demonstrate the beginnings of a security application. As before, a
PiCameraCircularIO (page 125) instance is used to keep the last few seconds of video recorded in memory.
While the video is being recorded, video-port-based still captures are taken to provide a motion detection routine
with some input (the actual motion detection algorithm is left as an exercise for the reader).

Once motion is detected, the last 10 seconds of video are written to disk, and video recording is split to another
disk file to proceed until motion is no longer detected. Once motion is no longer detected, we split the recording
back to the in-memory ring-buffer:

import io
import random
import picamera
from PIL import Image

prior_image = None

def detect_motion(camera):
global prior_image
stream = io.BytesIO()
camera.capture(stream, format='jpeg', use_video_port=True)
stream.seek(0)
if prior_image is None:

prior_image = Image.open(stream)
return False

else:
current_image = Image.open(stream)
Compare current_image to prior_image to detect motion. This is
left as an exercise for the reader!
result = random.randint(0, 10) == 0
Once motion detection is done, make the prior image the current
prior_image = current_image
return result

with picamera.PiCamera() as camera:
camera.resolution = (1280, 720)
stream = picamera.PiCameraCircularIO(camera, seconds=10)
camera.start_recording(stream, format='h264')
try:

while True:
camera.wait_recording(1)
if detect_motion(camera):

print('Motion detected!')
As soon as we detect motion, split the recording to
record the frames "after" motion
camera.split_recording('after.h264')
Write the 10 seconds "before" motion to disk as well
stream.copy_to('before.h264', seconds=10)
stream.clear()
Wait until motion is no longer detected, then split
recording back to the in-memory circular buffer
while detect_motion(camera):

camera.wait_recording(1)
print('Motion stopped!')
camera.split_recording(stream)

finally:
camera.stop_recording()

This example also demonstrates using the seconds parameter of the copy_to() (page 126) method to limit the
before file to 10 seconds of data (given that the circular buffer may contain considerably more than this).

46 Chapter 4. Advanced Recipes

Picamera 1.13 Documentation, Release 1.13

New in version 1.0.

Changed in version 1.11: Added use of copy_to() (page 126)

4.15 Custom encoders

You can override and/or extend the encoder classes used during image or video capture. This is particularly useful
with video capture as it allows you to run your own code in response to every frame, although naturally whatever
code runs within the encoder’s callback has to be reasonably quick to avoid stalling the encoder pipeline.

Writing a custom encoder is quite a bit harder than writing a custom output (page 31) and in most cases there’s
little benefit. The only thing a custom encoder gives you that a custom output doesn’t is access to the buffer header
flags. For many output formats (MJPEG and YUV for example), these won’t tell you anything interesting (i.e.
they’ll simply indicate that the buffer contains a full frame and nothing else). Currently, the only format where
the buffer header flags contain useful information is H.264. Even then, most of the information (I-frame, P-frame,
motion information, etc.) would be accessible from the frame (page 111) attribute which you could access from
your custom output’s write method.

The encoder classes defined by picamera form the following hierarchy (dark classes are actually instantiated by
the implementation in picamera, light classes implement base functionality but aren’t technically “abstract”):

PiEncoder

PiImageEncoder

PiVideoEncoder

PiOneImageEncoder

PiMultiImageEncoder

PiRawMixin

PiRawImageMixin

PiRawOneImageEncoder

PiRawMultiImageEncoder

PiRawVideoEncoder

PiCookedOneImageEncoder

PiCookedMultiImageEncoder

PiCookedVideoEncoder

The following table details which PiCamera (page 95) methods use which encoder classes, and which method
they call to construct these encoders:

Method(s) Calls Returns
capture() (page 97)
capture_continuous()
(page 98) capture_sequence()
(page 100)

_get_image_encoder() PiCookedOneImageEncoder
(page 141)
PiRawOneImageEncoder
(page 142)

capture_sequence()
(page 100)

_get_images_encoder() PiCookedMultiImageEncoder
(page 142)
PiRawMultiImageEncoder
(page 142)

start_recording() (page 103)
record_sequence() (page 101)

_get_video_encoder() PiCookedVideoEncoder
(page 140) PiRawVideoEncoder
(page 140)

It is recommended, particularly in the case of the image encoder classes, that you familiarize yourself with the
specific function of these classes so that you can determine the best class to extend for your particular needs. You
may find that one of the intermediate classes is a better basis for your own modifications.

4.15. Custom encoders 47

Picamera 1.13 Documentation, Release 1.13

In the following example recipe we will extend the PiCookedVideoEncoder (page 140) class to store how
many I-frames and P-frames are captured (the camera’s encoder doesn’t use B-frames):

import picamera
import picamera.mmal as mmal

Override PiVideoEncoder to keep track of the number of each type of frame
class MyEncoder(picamera.PiCookedVideoEncoder):

def start(self, output, motion_output=None):
self.parent.i_frames = 0
self.parent.p_frames = 0
super(MyEncoder, self).start(output, motion_output)

def _callback_write(self, buf):
Only count when buffer indicates it's the end of a frame, and
it's not an SPS/PPS header (..._CONFIG)
if (

(buf.flags & mmal.MMAL_BUFFER_HEADER_FLAG_FRAME_END) and
not (buf.flags & mmal.MMAL_BUFFER_HEADER_FLAG_CONFIG)

):
if buf.flags & mmal.MMAL_BUFFER_HEADER_FLAG_KEYFRAME:

self.parent.i_frames += 1
else:

self.parent.p_frames += 1
Remember to return the result of the parent method!
return super(MyEncoder, self)._callback_write(buf)

Override PiCamera to use our custom encoder for video recording
class MyCamera(picamera.PiCamera):

def __init__(self):
super(MyCamera, self).__init__()
self.i_frames = 0
self.p_frames = 0

def _get_video_encoder(
self, camera_port, output_port, format, resize, **options):

return MyEncoder(
self, camera_port, output_port, format, resize, **options)

with MyCamera() as camera:
camera.start_recording('foo.h264')
camera.wait_recording(10)
camera.stop_recording()
print('Recording contains %d I-frames and %d P-frames' % (

camera.i_frames, camera.p_frames))

Please note that the above recipe is flawed: PiCamera is capable of initiating multiple simultaneous recordings
(page 42). If this were used with the above recipe, then each encoder would wind up incrementing the i_frames
and p_frames attributes on the MyCamera instance leading to incorrect results.

New in version 1.5.

4.16 Raw Bayer data captures

The bayer parameter of the capture() (page 97) method causes the raw Bayer data recorded by the camera’s
sensor to be output as part of the image meta-data.

Note: The bayer parameter only operates with the JPEG format, and only for captures from the still port (i.e.
when use_video_port is False, as it is by default).

48 Chapter 4. Advanced Recipes

Picamera 1.13 Documentation, Release 1.13

Raw Bayer data differs considerably from simple unencoded captures; it is the data recorded by the camera’s
sensor prior to any GPU processing including auto white balance, vignette compensation, smoothing, down-
scaling, etc. This also means:

• Bayer data is always full resolution, regardless of the camera’s output resolution (page 117) and any
resize parameter.

• Bayer data occupies the last 6,404,096 bytes of the output file for the V1 module, or the last 10,270,208
bytes for the V2 module. The first 32,768 bytes of this is header data which starts with the string 'BRCM'.

• Bayer data consists of 10-bit values, because this is the sensitivity of the OV564750 and IMX21951 sensors
used in the Pi’s camera modules. The 10-bit values are organized as 4 8-bit values, followed by the low-order
2-bits of the 4 values packed into a fifth byte.

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2 2 2 21 1 1 1

1

2

3

4

5

B
y
te
s

8 7 6 5 4 3 2 1
Bits

MSB LSB

• Bayer data is organized in a BGGR pattern (a minor variation of the common Bayer CFA52). The raw data
therefore has twice as many green pixels as red or blue and if viewed “raw” will look distinctly strange (too
dark, too green, and with zippering effects along any straight edges).

• To make a “normal” looking image from raw Bayer data you will need to perform de-mosaicing53 at the
very least, and probably some form of color balance54.

50 http://www.ovt.com/products/sensor.php?id=66
51 http://www.sony.net/Products/SC-HP/new_pro/april_2014/imx219_e.html
52 https://en.wikipedia.org/wiki/Bayer_filter
53 https://en.wikipedia.org/wiki/Demosaicing
54 https://en.wikipedia.org/wiki/Color_balance

4.16. Raw Bayer data captures 49

http://www.ovt.com/products/sensor.php?id=66
http://www.sony.net/Products/SC-HP/new_pro/april_2014/imx219_e.html
https://en.wikipedia.org/wiki/Bayer_filter
https://en.wikipedia.org/wiki/Demosaicing
https://en.wikipedia.org/wiki/Color_balance

Picamera 1.13 Documentation, Release 1.13

This (heavily commented) example script causes the camera to capture an image including the raw Bayer data.
It then proceeds to unpack the Bayer data into a 3-dimensional numpy55 array representing the raw RGB data
and finally performs a rudimentary de-mosaic step with weighted averages. A couple of numpy tricks are used
to improve performance but bear in mind that all processing is happening on the CPU and will be considerably
slower than normal image captures:

from __future__ import (
unicode_literals,
absolute_import,
print_function,
division,
)

import io
import time
import picamera
import numpy as np
from numpy.lib.stride_tricks import as_strided

stream = io.BytesIO()
with picamera.PiCamera() as camera:

Let the camera warm up for a couple of seconds
time.sleep(2)
Capture the image, including the Bayer data
camera.capture(stream, format='jpeg', bayer=True)
ver = {

'RP_ov5647': 1,
'RP_imx219': 2,
}[camera.exif_tags['IFD0.Model']]

Extract the raw Bayer data from the end of the stream, check the
header and strip if off before converting the data into a numpy array

offset = {
1: 6404096,
2: 10270208,
}[ver]

data = stream.getvalue()[-offset:]
assert data[:4] == 'BRCM'
data = data[32768:]
data = np.fromstring(data, dtype=np.uint8)

For the V1 module, the data consists of 1952 rows of 3264 bytes of data.
The last 8 rows of data are unused (they only exist because the maximum
resolution of 1944 rows is rounded up to the nearest 16).
#
For the V2 module, the data consists of 2480 rows of 4128 bytes of data.
There's actually 2464 rows of data, but the sensor's raw size is 2466
rows, rounded up to the nearest multiple of 16: 2480.
#
Likewise, the last few bytes of each row are unused (why?). Here we
reshape the data and strip off the unused bytes.

reshape, crop = {
1: ((1952, 3264), (1944, 3240)),
2: ((2480, 4128), (2464, 4100)),
}[ver]

data = data.reshape(reshape)[:crop[0], :crop[1]]

Horizontally, each row consists of 10-bit values. Every four bytes are
(continues on next page)

55 http://www.numpy.org/

50 Chapter 4. Advanced Recipes

http://www.numpy.org/

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

the high 8-bits of four values, and the 5th byte contains the packed low
2-bits of the preceding four values. In other words, the bits of the
values A, B, C, D and arranged like so:
#
byte 1 byte 2 byte 3 byte 4 byte 5
AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD AABBCCDD
#
Here, we convert our data into a 16-bit array, shift all values left by
2-bits and unpack the low-order bits from every 5th byte in each row,
then remove the columns containing the packed bits

data = data.astype(np.uint16) << 2
for byte in range(4):

data[:, byte::5] |= ((data[:, 4::5] >> ((4 - byte) * 2)) & 0b11)
data = np.delete(data, np.s_[4::5], 1)

Now to split the data up into its red, green, and blue components. The
Bayer pattern of the OV5647 sensor is BGGR. In other words the first
row contains alternating green/blue elements, the second row contains
alternating red/green elements, and so on as illustrated below:
#
GBGBGBGBGBGBGB
RGRGRGRGRGRGRG
GBGBGBGBGBGBGB
RGRGRGRGRGRGRG
#
Please note that if you use vflip or hflip to change the orientation
of the capture, you must flip the Bayer pattern accordingly

rgb = np.zeros(data.shape + (3,), dtype=data.dtype)
rgb[1::2, 0::2, 0] = data[1::2, 0::2] # Red
rgb[0::2, 0::2, 1] = data[0::2, 0::2] # Green
rgb[1::2, 1::2, 1] = data[1::2, 1::2] # Green
rgb[0::2, 1::2, 2] = data[0::2, 1::2] # Blue

At this point we now have the raw Bayer data with the correct values
and colors but the data still requires de-mosaicing and
post-processing. If you wish to do this yourself, end the script here!
#
Below we present a fairly naive de-mosaic method that simply
calculates the weighted average of a pixel based on the pixels
surrounding it. The weighting is provided by a byte representation of
the Bayer filter which we construct first:

bayer = np.zeros(rgb.shape, dtype=np.uint8)
bayer[1::2, 0::2, 0] = 1 # Red
bayer[0::2, 0::2, 1] = 1 # Green
bayer[1::2, 1::2, 1] = 1 # Green
bayer[0::2, 1::2, 2] = 1 # Blue

Allocate an array to hold our output with the same shape as the input
data. After this we define the size of window that will be used to
calculate each weighted average (3x3). Then we pad out the rgb and
bayer arrays, adding blank pixels at their edges to compensate for the
size of the window when calculating averages for edge pixels.

output = np.empty(rgb.shape, dtype=rgb.dtype)
window = (3, 3)
borders = (window[0] - 1, window[1] - 1)
border = (borders[0] // 2, borders[1] // 2)

(continues on next page)

4.16. Raw Bayer data captures 51

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

rgb = np.pad(rgb, [
(border[0], border[0]),
(border[1], border[1]),
(0, 0),
], 'constant')

bayer = np.pad(bayer, [
(border[0], border[0]),
(border[1], border[1]),
(0, 0),
], 'constant')

For each plane in the RGB data, we use a nifty numpy trick
(as_strided) to construct a view over the plane of 3x3 matrices. We do
the same for the bayer array, then use Einstein summation on each
(np.sum is simpler, but copies the data so it's slower), and divide
the results to get our weighted average:

for plane in range(3):
p = rgb[..., plane]
b = bayer[..., plane]
pview = as_strided(p, shape=(

p.shape[0] - borders[0],
p.shape[1] - borders[1]) + window, strides=p.strides * 2)

bview = as_strided(b, shape=(
b.shape[0] - borders[0],
b.shape[1] - borders[1]) + window, strides=b.strides * 2)

psum = np.einsum('ijkl->ij', pview)
bsum = np.einsum('ijkl->ij', bview)
output[..., plane] = psum // bsum

At this point output should contain a reasonably "normal" looking
image, although it still won't look as good as the camera's normal
output (as it lacks vignette compensation, AWB, etc).
#
If you want to view this in most packages (like GIMP) you'll need to
convert it to 8-bit RGB data. The simplest way to do this is by
right-shifting everything by 2-bits (yes, this makes all that
unpacking work at the start rather redundant...)

output = (output >> 2).astype(np.uint8)
with open('image.data', 'wb') as f:

output.tofile(f)

An enhanced version of this recipe (which also handles different bayer orders caused by flips and rotations) is also
encapsulated in the PiBayerArray (page 155) class in the picamera.array (page 153) module, which
means the same can be achieved as follows:

import time
import picamera
import picamera.array
import numpy as np

with picamera.PiCamera() as camera:
with picamera.array.PiBayerArray(camera) as stream:

camera.capture(stream, 'jpeg', bayer=True)
Demosaic data and write to output (just use stream.array if you
want to skip the demosaic step)
output = (stream.demosaic() >> 2).astype(np.uint8)
with open('image.data', 'wb') as f:

output.tofile(f)

New in version 1.3.

52 Chapter 4. Advanced Recipes

Picamera 1.13 Documentation, Release 1.13

Changed in version 1.5: Added note about new picamera.array (page 153) module.

4.17 Using a flash with the camera

The Pi’s camera module includes an LED flash driver which can be used to illuminate a scene upon capture. The
flash driver has two configurable GPIO pins:

• one for connection to an LED based flash (xenon flashes won’t work with the camera module due to it
having a rolling shutter56). This will fire before (flash metering57) and during capture

• one for an optional privacy indicator (a requirement for cameras in some jurisdictions). This will fire after
taking a picture to indicate that the camera has been used

These pins are configured by updating the VideoCore device tree blob58. Firstly, install the device tree compiler,
then grab a copy of the default device tree source:

$ sudo apt-get install device-tree-compiler
$ wget https://github.com/raspberrypi/firmware/raw/master/extra/dt-blob.dts

The device tree source contains a number of sections enclosed in curly braces, which form a hierarchy of defini-
tions. The section to edit will depend on which revision of Raspberry Pi you have (check the silk-screen writing
on the board for the revision number if you are unsure):

Model Section
Raspberry Pi Model B rev 1 /videocore/pins_rev1
Raspberry Pi Model A and Model B rev 2 /videocore/pins_rev2
Raspberry Pi Model A+ /videocore/pins_aplus
Raspberry Pi Model B+ rev 1.1 /videocore/pins_bplus1
Raspberry Pi Model B+ rev 1.2 /videocore/pins_bplus2
Raspberry Pi 2 Model B rev 1.0 /videocore/pins_2b1
Raspberry Pi 2 Model B rev 1.1 and rev 1.2 /videocore/pins_2b2
Raspberry Pi 3 Model B rev 1.0 /videocore/pins_3b1
Raspberry Pi 3 Model B rev 1.2 /videocore/pins_3b2
Raspberry Pi Zero rev 1.2 and rev 1.3 /videocore/pins_pi0

Under the section for your particular model of Pi you will find pin_config and pin_defines sections.
Under the pin_config section you need to configure the GPIO pins you want to use for the flash and privacy
indicator as using pull down termination. Then, under the pin_defines section you need to associate those
pins with the FLASH_0_ENABLE and FLASH_0_INDICATOR pins.

For example, to configure GPIO 17 as the flash pin, leaving the privacy indicator pin absent, on a Raspberry Pi 2
Model B rev 1.1 you would add the following line under the /videocore/pins_2b2/pin_config section:

pin@p17 { function = "output"; termination = "pull_down"; };

Please note that GPIO pins will be numbered according to the Broadcom pin numbers59 (BCM mode in the
RPi.GPIO library, not BOARD mode). Then change the following section under /videocore/pins_2b2/
pin_defines. Specifically, change the type from “absent” to “internal”, and add a number property defining
the flash pin as GPIO 17:

pin_define@FLASH_0_ENABLE {
type = "internal";
number = <17>;

};

56 https://en.wikipedia.org/wiki/Rolling_shutter
57 https://en.wikipedia.org/wiki/Through-the-lens_metering#Through_the_lens_flash_metering
58 https://www.raspberrypi.org/documentation/configuration/pin-configuration.md
59 https://raspberrypi.stackexchange.com/questions/12966/what-is-the-difference-between-board-and-bcm-for-gpio-pin-numbering

4.17. Using a flash with the camera 53

https://en.wikipedia.org/wiki/Rolling_shutter
https://en.wikipedia.org/wiki/Through-the-lens_metering#Through_the_lens_flash_metering
https://www.raspberrypi.org/documentation/configuration/pin-configuration.md
https://raspberrypi.stackexchange.com/questions/12966/what-is-the-difference-between-board-and-bcm-for-gpio-pin-numbering

Picamera 1.13 Documentation, Release 1.13

With the device tree source updated, you now need to compile it into a binary blob for the firmware to read. This
is done with the following command line:

$ dtc -q -I dts -O dtb dt-blob.dts -o dt-blob.bin

Dissecting this command line, the following components are present:

• dtc - Execute the device tree compiler

• -I dts - The input file is in device tree source format

• -O dtb - The output file should be produced in device tree binary format

• dt-blob.dts - The first anonymous parameter is the input filename

• -o dt-blob.bin - The output filename

This should output nothing. If you get lots of warnings, you’ve forgotten the -q switch; you can ignore the
warnings. If anything else is output, it will most likely be an error message indicating you have made a mistake
in the device tree source. In this case, review your edits carefully (note that sections and properties must be
semi-colon terminated for example), and try again.

Now the device tree binary blob has been produced, it needs to be placed on the first partition of the SD card. In
the case of non-NOOBS Raspbian installs, this is generally the partition mounted as /boot:

$ sudo cp dt-blob.bin /boot/

However, in the case of NOOBS Raspbian installs, this is the recovery partition, which is not mounted by default:

$ sudo mkdir /mnt/recovery
$ sudo mount /dev/mmcblk0p1 /mnt/recovery
$ sudo cp dt-blob.bin /mnt/recovery
$ sudo umount /mnt/recovery
$ sudo rmdir /mnt/recovery

Please note that the filename and location are important. The binary blob must be named dt-blob.bin (all
lowercase), and it must be placed in the root directory of the first partition on the SD card. Once you have
rebooted the Pi (to activate the new device tree configuration) you can test the flash with the following simple
script:

import picamera

with picamera.PiCamera() as camera:
camera.flash_mode = 'on'
camera.capture('foo.jpg')

You should see your flash LED blink twice during the execution of the script.

Warning: The GPIOs only have a limited current drive which is insufficient for powering the sort of LEDs
typically used as flashes in mobile phones. You will require a suitable drive circuit to power such devices, or
risk damaging your Pi. One developer on the Pi forums notes:

For reference, the flash driver chips we have used on mobile phones will often drive up to 500mA
into the LED. If you’re aiming for that, then please think about your power supply too.

If you wish to experiment with the flash driver without attaching anything to the GPIO pins, you can also re-
configure the camera’s own LED to act as the flash LED. Obviously this is no good for actual flash photogra-
phy but it can demonstrate whether your configuration is good. In this case you need not add anything to the
pin_config section (the camera’s LED pin is already defined to use pull down termination), but you do need to
set CAMERA_0_LED to absent, and FLASH_0_ENABLE to the old CAMERA_0_LED definition (this will be pin
5 in the case of pins_rev1 and pins_rev2, and pin 32 in the case of everything else). For example, change:

54 Chapter 4. Advanced Recipes

Picamera 1.13 Documentation, Release 1.13

pin_define@CAMERA_0_LED {
type = "internal";
number = <5>;

};
pin_define@FLASH_0_ENABLE {

type = "absent";
};

into this:

pin_define@CAMERA_0_LED {
type = "absent";

};
pin_define@FLASH_0_ENABLE {

type = "internal";
number = <5>;

};

After compiling and installing the device tree blob according to the instructions above, and rebooting the Pi, you
should find the camera LED now acts as a flash LED with the Python script above.

New in version 1.10.

4.17. Using a flash with the camera 55

Picamera 1.13 Documentation, Release 1.13

56 Chapter 4. Advanced Recipes

CHAPTER 5

Frequently Asked Questions (FAQ)

5.1 AttributeError: ‘module’ object has no attribute ‘PiCamera’

You’ve named your script picamera.py (or you’ve named some other script picamera.py. If you name a
script after a system or third-party package you will break imports for that system or third-party package. Delete
or rename that script (and any associated .pyc files), and try again.

5.2 Can I put the preview in a window?

No. The camera module’s preview system is quite crude: it simply tells the GPU to overlay the preview on the
Pi’s video output. The preview has no knowledge (or interaction with) the X-Windows environment (incidentally,
this is why the preview works quite happily from the command line, even without anyone logged in).

That said, the preview area can be resized and repositioned via the window (page 133) attribute of the preview
(page 117) object. If your program can respond to window repositioning and sizing events you can “cheat” and
position the preview within the borders of the target window. However, there’s currently no way to allow anything
to appear on top of the preview so this is an imperfect solution at best.

5.3 Help! I started a preview and can’t see my console!

As mentioned above, the preview is simply an overlay over the Pi’s video output. If you start a preview you may
therefore discover you can’t see your console anymore and there’s no obvious way of getting it back. If you’re
confident in your typing skills you can try calling stop_preview() (page 104) by typing “blindly” into your
hidden console. However, the simplest way of getting your display back is usually to hit Ctrl+D to terminate the
Python process (which should also shut down the camera).

When starting a preview, you may want to set the alpha parameter of the start_preview() (page 103) method
to something like 128. This should ensure that when the preview is displayed, it is partially transparent so you can
still see your console.

57

Picamera 1.13 Documentation, Release 1.13

5.4 The preview doesn’t work on my PiTFT screen

The camera’s preview system directly overlays the Pi’s output on the HDMI or composite video ports. At this
time, it will not operate with GPIO-driven displays like the PiTFT. Some projects, like the Adafruit Touchscreen
Camera project60, have approximated a preview by rapidly capturing unencoded images and displaying them on
the PiTFT instead.

5.5 How much power does the camera require?

The camera requires 250mA61 when running. Note that simply creating a PiCamera (page 95) object means the
camera is running (due to the hidden preview that is started to allow the auto-exposure algorithm to run). If you
are running your Pi from batteries, you should close() (page 101) (or destroy) the instance when the camera
is not required in order to conserve power. For example, the following code captures 60 images over an hour, but
leaves the camera running all the time:

import picamera
import time

with picamera.PiCamera() as camera:
camera.resolution = (1280, 720)
time.sleep(1) # Camera warm-up time
for i, filename in enumerate(camera.capture_continuous('image{counter:02d}.jpg

→˓')):
print('Captured %s' % filename)
Capture one image a minute
time.sleep(60)
if i == 59:

break

By contrast, this code closes the camera between shots (but can’t use the convenient capture_continuous()
(page 98) method as a result):

import picamera
import time

for i in range(60):
with picamera.PiCamera() as camera:

camera.resolution = (1280, 720)
time.sleep(1) # Camera warm-up time
filename = 'image%02d.jpg' % i
camera.capture(filename)
print('Captured %s' % filename)

Capture one image a minute
time.sleep(59)

Note: Please note the timings in the scripts above are approximate. A more precise example of timing is given in
Capturing timelapse sequences (page 14).

If you are experiencing lockups or reboots when the camera is active, your power supply may be insufficient.
A practical minimum is 1A for running a Pi with an active camera module; more may be required if additional
peripherals are attached.

60 https://learn.adafruit.com/diy-wifi-raspberry-pi-touch-cam/overview
61 https://www.raspberrypi.org/help/faqs/#cameraPower

58 Chapter 5. Frequently Asked Questions (FAQ)

https://learn.adafruit.com/diy-wifi-raspberry-pi-touch-cam/overview
https://learn.adafruit.com/diy-wifi-raspberry-pi-touch-cam/overview
https://www.raspberrypi.org/help/faqs/#cameraPower

Picamera 1.13 Documentation, Release 1.13

5.6 How can I take two consecutive pictures with equivalent set-
tings?

See the Capturing consistent images (page 13) recipe.

5.7 Can I use picamera with a USB webcam?

No. The picamera library relies on libmmal which is specific to the Pi’s camera module.

5.8 How can I tell what version of picamera I have installed?

The picamera library relies on the setuptools package for installation services. You can use the setuptools
pkg_resources API to query which version of picamera is available in your Python environment like so:

>>> from pkg_resources import require
>>> require('picamera')
[picamera 1.2 (/usr/local/lib/python2.7/dist-packages)]
>>> require('picamera')[0].version
'1.2'

If you have multiple versions installed (e.g. from pip and apt-get) they will not show up in the list returned
by the require method. However, the first entry in the list will be the version that import picamera will
import.

If you receive the error “No module named pkg_resources”, you need to install the pip utility. This can be done
with the following command in Raspbian:

$ sudo apt-get install python-pip

5.9 How come I can’t upgrade to the latest version?

If you are using Raspbian, firstly check that you haven’t got both a PyPI (pip) and an apt (apt-get) installation
of picamera installed simultaneously. If you have, one will be taking precedence and it may not be the most up to
date version.

Secondly, please understand that while the PyPI release process is entirely automated (so as soon as a new picam-
era release is announced, it will be available on PyPI), the release process for Raspbian packages is semi-manual.
There is typically a delay of a few days after a release before updated picamera packages become accessible in the
Raspbian repository.

Users desperate to try the latest version may choose to uninstall their apt based copy (uninstall instructions are
provided in the installation instructions (page 1), and install using pip instead (page 2). However, be aware that
keeping a PyPI based installation up to date is a more manual process (sticking with apt ensures everything gets
upgraded with a simple sudo apt-get upgrade command).

5.10 Why is there so much latency when streaming video?

The first thing to understand is that streaming latency has little to do with the encoding or sending end of things
(i.e. the Pi), and much more to do with the playing or receiving end. If the Pi weren’t capable of encoding a frame
before the next frame arrived, it wouldn’t be capable of recording video at all (because its internal buffers would
rapidly become filled with unencoded frames).

5.6. How can I take two consecutive pictures with equivalent settings? 59

Picamera 1.13 Documentation, Release 1.13

So, why do players typically introduce several seconds worth of latency? The primary reason is that most players
(e.g. VLC) are optimized for playing streams over a network. Such players allocate a large (multi-second) buffer
and only start playing once this is filled to guard against possible future packet loss.

A secondary reason that all such players allocate at least a couple of frames worth of buffering is that the MPEG
standard includes certain frame types that require it:

• I-frames (intra-frames, also known as “key frames”). These frames contain a complete picture and thus are
the largest sort of frames. They occur at the start of playback and at periodic points during the stream.

• P-frames (predicted frames). These frames describe the changes from the prior frame to the current frame,
therefore one must have successfully decoded the prior frame in order to decode a P-frame.

• B-frames (bi-directional predicted frames). These frames describe the changes from the next frame to the
current frame, therefore one must have successfully decoded the next frame in order to decode the current
B-frame.

B-frames aren’t produced by the Pi’s camera (or, as I understand it, by most real-time recording cameras) as
it would require buffering yet-to-be-recorded frames before encoding the current one. However, most recorded
media (DVDs, Blu-rays, and hence network video streams) do use them, so players must support them. It is
simplest to write such a player by assuming that any source may contain B-frames, and buffering at least 2 frames
worth of data at all times to make decoding them simpler.

As for the network in between, a slow wifi network may introduce a frame’s worth of latency, but not much more
than that. Check the ping time across your network; it’s likely to be less than 30ms in which case your network
cannot account for more than a frame’s worth of latency.

TL;DR: the reason you’ve got lots of latency when streaming video is nothing to do with the Pi. You need to
persuade your video player to reduce or forgo its buffering.

5.11 Why are there more than 20 seconds of video in the circular
buffer?

Read the note at the bottom of the Recording to a circular stream (page 18) recipe. When you set the number of
seconds for the circular stream you are setting a lower bound for a given bitrate (which defaults to 17Mbps - the
same as the video recording default). If the recorded scene has low motion or complexity the stream can store
considerably more than the number of seconds specified.

If you need to copy a specific number of seconds from the stream, see the seconds parameter of the copy_to()
(page 126) method (which was introduced in release 1.11).

Finally, if you specify a different bitrate limit for the stream and the recording, the seconds limit will be inaccurate.

5.12 Can I move the annotation text?

No: the firmware provides no means of moving the annotation text. The only configurable attributes of the
annotation are currently color and font size.

5.13 Why is playback too fast/too slow in VLC/omxplayer/etc.?

The camera’s H264 encoder doesn’t output a full MP4 file (which would contain frames-per-second meta-data).
Instead it outputs an H264 NAL stream which just has frame-size and a few other details (but not FPS).

Most players (like VLC) default to 24, 25, or 30 fps. Hence, recordings at 12fps will appear “fast”, while record-
ings as 60fps will appear “slow”. Your playback client needs to be told what fps to use when playing back
(assuming it supports such an option).

60 Chapter 5. Frequently Asked Questions (FAQ)

Picamera 1.13 Documentation, Release 1.13

For those wondering why the camera doesn’t output a full MP4 file, consider that the Pi camera’s heritage is
mobile phone cameras. In these devices you only want the camera to output the H264 stream so you can mux it
with, say, an AAC stream recorded from the microphone input and wrap the result into a full MP4 file.

To convert the H264 NAL stream to a full MP4 file, there are a couple of options. The simplest is to use the
MP4Box utility from the gpac package on Raspbian. Unfortunately this only works with files; it cannot accept
redirected streams:

$ sudo apt-get install gpac
...
$ MP4Box -add input.h264 output.mp4

Alternatively you can use the console version of VLC to handle the conversion. This is a more complex command
line, but a lot more powerful (it’ll handle redirected streams and can be used with a vast array of outputs including
HTTP, RTP, etc.):

$ sudo apt-get install vlc
...
$ cvlc input.h264 --play-and-exit --sout \
> '#standard{access=file,mux=mp4,dst=output.mp4}' :demux=h264 \

Or to read from stdin:

$ raspivid -t 5000 -o - | cvlc stream:///dev/stdin \
> --play-and-exit --sout \
> '#standard{access=file,mux=mp4,dst=output.mp4}' :demux=h264 \

5.14 Out of resources at full resolution on a V2 module

See Hardware Limits (page 79).

5.15 Preview flickers at full resolution on a V2 module

Use the new resolution (page 134) property to select a lower resolution for the preview, or specify one when
starting the preview. For example:

from picamera import PiCamera

camera = PiCamera()
camera.resolution = camera.MAX_RESOLUTION
camera.start_preview(resolution=(1024, 768))

5.16 Camera locks up with multiprocessing

The camera firmware is designed to be used by a single process at a time. Attempting to use the camera from
multiple processes simultaneously will fail in a variety of ways (from simple errors to the process locking up).

Python’s multiprocessing62 module creates multiple copies of a Python process (usually via os.fork()63)
for the purpose of parallel processing. Whilst you can use multiprocessing64 with picamera, you must ensure
that only a single process creates a PiCamera (page 95) instance at any given time.

62 https://docs.python.org/3.4/library/multiprocessing.html#module-multiprocessing
63 https://docs.python.org/3.4/library/os.html#os.fork
64 https://docs.python.org/3.4/library/multiprocessing.html#module-multiprocessing

5.14. Out of resources at full resolution on a V2 module 61

https://docs.python.org/3.4/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3.4/library/os.html#os.fork
https://docs.python.org/3.4/library/multiprocessing.html#module-multiprocessing

Picamera 1.13 Documentation, Release 1.13

The following script demonstrates an approach with one process that owns the camera, which handles disseminat-
ing captured frames to other processes via a Queue65:

import os
import io
import time
import multiprocessing as mp
from queue import Empty
import picamera
from PIL import Image

class QueueOutput(object):
def __init__(self, queue, finished):

self.queue = queue
self.finished = finished
self.stream = io.BytesIO()

def write(self, buf):
if buf.startswith(b'\xff\xd8'):

New frame, put the last frame's data in the queue
size = self.stream.tell()
if size:

self.stream.seek(0)
self.queue.put(self.stream.read(size))
self.stream.seek(0)

self.stream.write(buf)

def flush(self):
self.queue.close()
self.queue.join_thread()
self.finished.set()

def do_capture(queue, finished):
with picamera.PiCamera(resolution='VGA', framerate=30) as camera:

output = QueueOutput(queue, finished)
camera.start_recording(output, format='mjpeg')
camera.wait_recording(10)
camera.stop_recording()

def do_processing(queue, finished):
while not finished.wait(0.1):

try:
stream = io.BytesIO(queue.get(False))

except Empty:
pass

else:
stream.seek(0)
image = Image.open(stream)
Pretend it takes 0.1 seconds to process the frame; on a quad-core
Pi this gives a maximum processing throughput of 40fps
time.sleep(0.1)
print('%d: Processing image with size %dx%d' % (

os.getpid(), image.size[0], image.size[1]))

if __name__ == '__main__':
queue = mp.Queue()
finished = mp.Event()
capture_proc = mp.Process(target=do_capture, args=(queue, finished))
processing_procs = [

mp.Process(target=do_processing, args=(queue, finished))
for i in range(4)

(continues on next page)

65 https://docs.python.org/3.4/library/multiprocessing.html#multiprocessing.Queue

62 Chapter 5. Frequently Asked Questions (FAQ)

https://docs.python.org/3.4/library/multiprocessing.html#multiprocessing.Queue

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

]
for proc in processing_procs:

proc.start()
capture_proc.start()
for proc in processing_procs:

proc.join()
capture_proc.join()

5.17 VLC won’t play back MJPEG recordings

MJPEG66 is a particularly ill-defined format (see “Disadvantages67”) which results in compatibility issues between
software that purports to produce MJPEG files, and software that purports to play MJPEG files. This is one such
case: the Pi’s camera firmware produces an MJPEG file which simply consists of concatenated JPEGs; this is
reasonably common on other devices and webcams, and is a nice simple format which makes parsing particularly
easy (see Web streaming (page 40) for an example).

Unfortunately, VLC doesn’t recognize this as a valid MJPEG file: it thinks it’s a single JPEG image and doesn’t
bother reading the rest of the file (which is also a reasonable interpretation in the absence of any other information).
Thankfully, extra command line switches can be provided to give it a hint that there’s more to read in the file:

$ vlc --demux=mjpeg --mjpeg-fps=30 my_recording.mjpeg

66 https://en.wikipedia.org/wiki/Motion_JPEG
67 https://en.wikipedia.org/wiki/Motion_JPEG#Disadvantages

5.17. VLC won’t play back MJPEG recordings 63

https://en.wikipedia.org/wiki/Motion_JPEG
https://en.wikipedia.org/wiki/Motion_JPEG#Disadvantages

Picamera 1.13 Documentation, Release 1.13

64 Chapter 5. Frequently Asked Questions (FAQ)

CHAPTER 6

Camera Hardware

This chapter provides an overview of how the camera works under various conditions, as well as an introduction
to the software interface that picamera uses.

6.1 Theory of Operation

Many questions I receive regarding picamera are based on misunderstandings of how the camera works. This
chapter attempts to correct those misunderstandings and gives the reader a basic description of the operation of
the camera. The chapter deliberately follows a lie-to-children68 model, presenting first a technically inaccurate
but useful model of the camera’s operation, then refining it closer to the truth later on.

6.1.1 Misconception #1

The Pi’s camera module is basically a mobile phone camera module. Mobile phone digital cameras differ from
larger, more expensive, cameras (DSLRs69) in a few respects. The most important of these, for understanding the
Pi’s camera, is that many mobile cameras (including the Pi’s camera module) use a rolling shutter70 to capture
images. When the camera needs to capture an image, it reads out pixels from the sensor a row at a time rather than
capturing all pixel values at once.

In fact, the “global shutter” on DSLRs typically also reads out pixels a row at a time. The major difference is
that a DSLR will have a physical shutter that covers the sensor. Hence in a DSLR the procedure for capturing an
image is to open the shutter, letting the sensor “view” the scene, close the shutter, then read out each line from the
sensor.

The notion of “capturing an image” is thus a bit misleading as what we actually mean is “reading each row from
the sensor in turn and assembling them back into an image”.

6.1.2 Misconception #2

The notion that the camera is effectively idle until we tell it to capture a frame is also misleading. Don’t think of
the camera as a still image camera. Think of it as a video camera. Specifically one that, as soon as it is initialized,
is constantly streaming frames (or rather rows of frames) down the ribbon cable to the Pi for processing.

68 https://en.wikipedia.org/wiki/Lie-to-children
69 https://en.wikipedia.org/wiki/Digital_single-lens_reflex_camera
70 https://en.wikipedia.org/wiki/Rolling_shutter

65

https://en.wikipedia.org/wiki/Lie-to-children
https://en.wikipedia.org/wiki/Digital_single-lens_reflex_camera
https://en.wikipedia.org/wiki/Rolling_shutter

Picamera 1.13 Documentation, Release 1.13

The camera may seem idle, and your script may be doing nothing with the camera, but still numerous tasks are
going on in the background (automatic gain control, exposure time, white balance, and several other tasks which
we’ll cover later on).

This background processing is why most of the picamera example scripts seen in prior chapters include a
sleep(2) line after initializing the camera. The sleep(2) statement pauses your script for a couple of sec-
onds. During this pause, the camera’s firmware continually receives rows of frames from the camera and adjusts
the sensor’s gain and exposure times to make the frame look “normal” (not over- or under-exposed, etc).

So when we request the camera to “capture a frame” what we’re really requesting is that the camera give us
the next complete frame it assembles, rather than using it for gain and exposure then discarding it (as happens
constantly in the background otherwise).

6.1.3 Exposure time

What does the camera sensor actually detect? It detects photon counts; the more photons that hit the sensor
elements, the more those elements increment their counters. As our camera has no physical shutter (unlike a
DSLR) we can’t prevent light falling on the elements and incrementing the counts. In fact we can only perform
two operations on the sensor: reset a row of elements, or read a row of elements.

To understand a typical frame capture, let’s walk through the capture of a couple of frames of data with a hypo-
thetical camera sensor, with only 8x8 pixels and no Bayer filter71. The sensor is sat in bright light, but as it’s just
been initialized, all the elements start off with a count of 0. The sensor’s elements are shown on the left, and the
frame buffer, that we’ll read values into, is on the right:

Sensor elements –> Frame 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

The first line of data is reset (in this case that doesn’t change the state of any of the sensor elements). Whilst
resetting that line, light is still falling on all the other elements so they increment by 1:

Sensor elements –> Frame 1
0 0 0 0 0 0 0 0 Rst
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

The second line of data is reset (this time some sensor element states change). All other elements increment by 1.
We’ve not read anything yet, because we want to leave a delay for the first row to “see” enough light before we
read it:

71 https://en.wikipedia.org/wiki/Bayer_filter

66 Chapter 6. Camera Hardware

https://en.wikipedia.org/wiki/Bayer_filter

Picamera 1.13 Documentation, Release 1.13

Sensor elements –> Frame 1
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 Rst
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2

The third line of data is reset. Again, all other elements increment by 1:

Sensor elements –> Frame 1
2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 Rst
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3

Now the camera starts reading and resetting. The first line is read and the fourth line is reset:

Sensor elements –> Frame 1
3 3 3 3 3 3 3 3 –> 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 Rst
4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4

The second line is read whilst the fifth line is reset:

Sensor elements –> Frame 1
4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 –> 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 Rst
5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5

At this point it should be fairly clear what’s going on, so let’s fast-forward to the point where the final line is reset:

6.1. Theory of Operation 67

Picamera 1.13 Documentation, Release 1.13

Sensor elements –> Frame 1
7 7 7 7 7 7 7 7 3 3 3 3 3 3 3 3
6 6 6 6 6 6 6 6 3 3 3 3 3 3 3 3
5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 –> 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 Rst

At this point, the camera can start resetting the first line again while continuing to read the remaining lines from
the sensor:

Sensor elements –> Frame 1
0 0 0 0 0 0 0 0 Rst 3 3 3 3 3 3 3 3
7 7 7 7 7 7 7 7 3 3 3 3 3 3 3 3
6 6 6 6 6 6 6 6 3 3 3 3 3 3 3 3
5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 –> 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1

Let’s fast-forward to the state where the last row has been read. Our first frame is now complete:

Sensor elements –> Frame 1
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3
0 0 0 0 0 0 0 0 Rst 3 3 3 3 3 3 3 3
7 7 7 7 7 7 7 7 3 3 3 3 3 3 3 3
6 6 6 6 6 6 6 6 3 3 3 3 3 3 3 3
5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 –> 3 3 3 3 3 3 3 3

At this stage, Frame 1 would be sent off for post-processing and Frame 2 would be read into a new buffer:

Sensor elements –> Frame 2
3 3 3 3 3 3 3 3 –> 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 Rst
7 7 7 7 7 7 7 7
6 6 6 6 6 6 6 6
5 5 5 5 5 5 5 5
4 4 4 4 4 4 4 4

From the example above it should be clear that we can control the exposure time of a frame by varying the
delay between resetting a line and reading it (reset and read don’t really happen simultaneously, but they are
synchronized which is all that matters for this process).

68 Chapter 6. Camera Hardware

Picamera 1.13 Documentation, Release 1.13

Minimum exposure time

There are naturally limits to the minimum exposure time: reading out a line of elements must take a certain
minimum time. For example, if there are 500 rows on our hypothetical sensor, and reading each row takes a
minimum of 20ns then it will take a minimum of 500 × 20ns = 10ms to read a full frame. This is the minimum
exposure time of our hypothetical sensor.

Maximum framerate is determined by the minimum exposure time

The framerate is the number of frames the camera can capture per second. Depending on the time it takes to
capture one frame, the exposure time, we can only capture so many frames in a specific amount of time. For
example, if it takes 10ms to read a full frame, then we cannot capture more than 1s

10ms = 1s
0.01s = 100 frames in a

second. Hence the maximum framerate of our hypothetical 500 row sensor is 100fps.

This can be expressed in the word equation: 1s
min exposure time in s = max framerate in fps from which we can see the

inverse relationship. The lower the minimum exposure time, the larger the maximum framerate and vice versa.

Maximum exposure time is determined by the minimum framerate

To maximise the exposure time we need to capture as few frames as possible per second, i.e. we need a very
low framerate. Therefore the maximum exposure time is determined by the camera’s minimum framerate. The
minimum framerate is largely determined by how slow the sensor can be made to read lines (at the hardware level
this is down to the size of registers for holding things like line read-out times).

This can be expressed in the word equation: 1s
min framerate in fps = max exposure time in s

If we imagine that the minimum framerate of our hypothetical sensor is ½fps then the maximum exposure time
will be 1s

1/2
= 2s.

Exposure time is limited by current framerate

More generally, the framerate (page 111) setting of the camera limits the maximum exposure time of a given
frame. For example, if we set the framerate to 30fps, then we cannot spend more than 1s

30 = 331/3ms capturing
any given frame.

Therefore, the exposure_speed (page 110) attribute, which reports the exposure time of the last processed
frame (which is really a multiple of the sensor’s line read-out time) is limited by the camera’s framerate
(page 111).

Note: Tiny framerate adjustments, done with framerate_delta (page 112), are achieved by reading extra
“dummy” lines at the end of a frame. I.e reading a line but then discarding it.

6.1.4 Sensor gain

The other important factor influencing sensor element counts, aside from line read-out time, is the sensor’s gain72.
Specifically, the gain given by the analog_gain (page 105) attribute (the corresponding digital_gain
(page 108) is simply post-processing which we’ll cover later). However, there’s an obvious issue: how is this gain
“analog” if we’re dealing with digital photon counts?

Time to reveal the first lie: the sensor elements are not simple digital counters but are in fact analog components
that build up charge as more photons hit them. The analog gain influences how this charge is built-up. An analog-
to-digital converter73 (ADC) is used to convert the analog charge to a digital value during line read-out (in fact the
ADC’s speed is a large portion of the minimum line read-out time).

72 https://en.wikipedia.org/wiki/Gain_(electronics)
73 https://en.wikipedia.org/wiki/Analog-to-digital_converter

6.1. Theory of Operation 69

https://en.wikipedia.org/wiki/Gain_(electronics)
https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://en.wikipedia.org/wiki/Analog-to-digital_converter

Picamera 1.13 Documentation, Release 1.13

Note: Camera sensors also tend to have a border of non-sensing pixels (elements that are covered from light).
These are used to determine what level of charge represents “optically black”.

The camera’s elements are affected by heat (thermal radiation, after all, is just part of the electromagnetic spec-
trum74 close to the visible portion). Without the non-sensing pixels you would get different black levels at different
ambient temperatures.

The analog gain cannot be directly controlled in picamera, but various attributes can be used to “influence” it.

• Setting exposure_mode (page 110) to 'off' locks the analog (and digital) gains at their current values
and doesn’t allow them to adjust at all, no matter what happens to the scene, and no matter what other
camera attributes may be adjusted.

• Setting exposure_mode (page 110) to values other than 'off' permits the gains to “float” (change)
according to the auto-exposure mode selected. Where possible, the camera firmware prefers to adjust the
analog gain rather than the digital gain, because increasing the digital gain produces more noise. Some
examples of the adjustments made for different auto-exposure modes include:

– 'sports' reduces motion blur by preferentially increasing gain rather than exposure time (i.e. line
read-out time).

– 'night' is intended as a stills mode, so it permits very long exposure times while attempting to keep
gains low.

• The iso (page 115) attribute effectively represents another set of auto-exposure modes with specific gains:

– With the V1 camera module, ISO 100 attempts to use an overall gain of 1.0. ISO 200 attempts to use
an overall gain of 2.0, and so on.

– With the V2 camera module, ISO 100 produces an overall gain of ~1.84. ISO 60 produces overall
gain of 1.0, and ISO 800 of 14.72 (the V2 camera module was calibrated against the ISO film speed75

standard).

Hence, one might be tempted to think that iso (page 115) provides a means of fixing the gains, but this
isn’t entirely true: the exposure_mode (page 110) setting takes precedence (setting the exposure mode
to 'off' will fix the gains no matter what ISO is later set, and some exposure modes like 'spotlight'
also override ISO-adjusted gains).

6.1.5 Division of labor

At this point, a reader familiar with operating system theory may be questioning how a non real-time operating
system76 (non-RTOS) like Linux could possibly be reading lines from the sensor? After all, to ensure each line
is read in exactly the same amount of time (to ensure a constant exposure over the whole frame) would require
extremely precise timing, which cannot be achieved in a non-RTOS.

Time to reveal the second lie: lines are not actively “read” from the sensor. Rather, the sensor is configured (via
its registers) with a time per line and number of lines to read. Once started, the sensor simply reads lines, pushing
the data out to the Pi at the configured speed.

That takes care of how each line’s read-out time is kept constant, but it still doesn’t answer the question of how
we can guarantee that Linux is actually listening and ready to accept each line of data? The answer is quite simply
that Linux doesn’t. The CPU doesn’t talk to the camera directly. In fact, none of the camera processing occurs
on the CPU (running Linux) at all. Instead, it is done on the Pi’s GPU (VideoCore IV) which is running its own
real-time OS (VCOS).

Note: This is another lie: VCOS is actually an abstraction layer on top of an RTOS running on the GPU (ThreadX
at the time of writing). However, given that RTOS has changed in the past (hence the abstraction layer), and that

74 https://en.wikipedia.org/wiki/Electromagnetic_spectrum
75 https://en.wikipedia.org/wiki/Film_speed#Current_system:_ISO
76 https://en.wikipedia.org/wiki/Real-time_operating_system

70 Chapter 6. Camera Hardware

https://en.wikipedia.org/wiki/Electromagnetic_spectrum
https://en.wikipedia.org/wiki/Electromagnetic_spectrum
https://en.wikipedia.org/wiki/Film_speed#Current_system:_ISO
https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/Real-time_operating_system

Picamera 1.13 Documentation, Release 1.13

the user doesn’t directly interact with it anyway, it is perhaps simpler to think of the GPU as running something
called VCOS (without thinking too much about what that actually is).

The following diagram illustrates that the BCM2835 system on a chip77 (SoC) is comprised of an ARM Cortex
CPU running Linux (under which is running myscript.py which is using picamera), and a VideoCore IV
GPU running VCOS. The VideoCore Host Interface (VCHI) is a message passing system provided to permit
communication between these two components. The available RAM is split between the two components (128Mb
is a typical GPU memory split when using the camera). Finally, the camera module is shown above the SoC. It is
connected to the SoC via a CSI-2 interface (providing 2Gbps of bandwidth).

The scenario depicted is as follows:

1. The camera’s sensor has been configured and is continually streaming frame lines over the CSI-2 interface
to the GPU.

2. The GPU is assembling complete frame buffers from these lines and performing post-processing on these
buffers (we’ll go into further detail about this part in the next section).

3. Meanwhile, over on the CPU, myscript.py makes a capture call using picamera.

4. The picamera library in turn uses the MMAL API to enact this request (actually there’s quite a lot of MMAL
calls that go on here but for the sake of simplicity we represent all this with a single arrow).

5. The MMAL API sends a message over VCHI requesting a frame capture (again, in reality there’s a lot more
activity than a single message).

6. In response, the GPU initiates a DMA78 transfer of the next complete frame from its portion of RAM to the
CPU’s portion.

7. Finally, the GPU sends a message back over VCHI that the capture is complete.

8. This causes an MMAL thread to fire a callback in the picamera library, which in turn retrieves the frame (in
reality, this requires more MMAL and VCHI activity).

9. Finally, picamera calls write on the output object provided by myscript.py.

77 https://en.wikipedia.org/wiki/System_on_a_chip
78 https://en.wikipedia.org/wiki/Direct_memory_access

6.1. Theory of Operation 71

https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/Direct_memory_access

Picamera 1.13 Documentation, Release 1.13

BCM2835 SoC

ARM Cortex CPU VideoCore IV GPU

Linux

RAM

VCOS

GPU memory
split

picamera

MMAL

myscript.py

image
buffers

capturewrite

callback

VCHI post-proc

DMA

Camera

streaming frame line
s

①

②

③

④

⑤

⑥

⑦

⑧

⑨

6.1.6 Background processes

We’ve alluded briefly to some of the GPU processing going on in the sections above (gain control, exposure time,
white balance, frame encoding, etc). Time to reveal the final lie: the GPU is not, as depicted in the prior section,
one discrete component. Rather it is composed of numerous components each of which play a role in the camera’s
operation.

The diagram below depicts a more accurate representation of the GPU side of the BCM2835 SoC. From this we
get our first glimpse of the frame processing “pipeline” and why it is called such. In the diagram, an H264 video
is being recorded. The components that data passes through are as follows:

1. Starting at the camera module, some minor processing happens. Specifically, flips (horizontal and vertical),
line skipping, and pixel binning79 are configured on the sensor’s registers. Pixel binning actually happens
on the sensor itself, prior to the ADC to improve signal-to-noise ratios. See hflip (page 113), vflip
(page 120), and sensor_mode (page 118).

2. As described previously, frame lines are streamed over the CSI-2 interface to the GPU. There, it is received
by the Unicam component which writes the line data into RAM.

79 http://www.andor.com/learning-academy/ccd-binning-what-does-binning-mean

72 Chapter 6. Camera Hardware

http://www.andor.com/learning-academy/ccd-binning-what-does-binning-mean

Picamera 1.13 Documentation, Release 1.13

3. Next the GPU’s image signal processor80 (ISP) performs several post-processing steps on the frame data.

These include (in order):

• Transposition: If any rotation has been requested, the input is transposed to rotate the image (rotation
is always implemented by some combination of transposition and flips).

• Black level compensation: Use the non-light sensing elements (typically in a covered border) to
determine what level of charge represents “optically black”.

• Lens shading: The camera firmware includes a table that corrects for chromatic distortion from the
standard module’s lens. This is one reason why third party modules incorporating different lenses may
show non-uniform color across a frame.

• White balance: The red and blue gains are applied to correct the color balance81. See awb_gains
(page 106) and awb_mode (page 107).

• Digital gain: As mentioned above, this is a straight-forward post-processing step that applies a gain
to the Bayer values82. See digital_gain (page 108).

• Bayer de-noise: This is a noise reduction algorithm run on the frame data while it is still in Bayer
format.

• De-mosaic: The frame data is converted from Bayer format to YUV42083 which is the format used
by the remainder of the pipeline.

• YUV de-noise: Another noise reduction algorithm, this time with the frame in YUV420 format. See
image_denoise (page 113) and video_denoise (page 120).

• Sharpening: An algorithm to enhance edges in the image. See sharpness (page 119).

• Color processing: The brightness (page 107), contrast (page 108), and saturation
(page 118) adjustments are implemented.

• Distortion: The distortion introduced by the camera’s lens is corrected. At present this stage does
nothing as the stock lens isn’t a fish-eye lens84; it exists as an option should a future sensor require it.

• Resizing: At this point, the frame is resized to the requested output resolution (all prior stages have
been performed on “full” frame data at whatever resolution the sensor is configured to produce). See
resolution (page 117).

Some of these steps can be controlled directly (e.g. brightness, noise reduction), others can only be influ-
enced (e.g. analog and digital gain), and the remainder are not user-configurable at all (e.g. demosaic and
lens shading).

At this point the frame is effectively “complete”.

4. If you are producing “unencoded” output (YUV, RGB, etc.) the pipeline ends at this point, with the frame
data getting copied over to the CPU via DMA85. The ISP might be used to convert to RGB, but that’s all.

5. If you are producing encoded output (H264, MJPEG, MPEG2, etc.) the next step is one of the encoding
blocks, the H264 block in this case. The encoding blocks are specialized hardware designed specifically to
produce particular encodings. For example, the JPEG block will include hardware for performing lots of
parallel discrete cosine transforms86 (DCTs), while the H264 block will include hardware for performing
motion estimation87.

6. Once encoded, the output is copied to the CPU via DMA88.

80 https://en.wikipedia.org/wiki/Image_processor
81 https://en.wikipedia.org/wiki/Color_balance
82 https://en.wikipedia.org/wiki/Bayer_filter
83 https://en.wikipedia.org/wiki/YUV#Y.E2.80.B2UV420p_.28and_Y.E2.80.B2V12_or_YV12.29_to_RGB888_conversion
84 https://en.wikipedia.org/wiki/Fisheye_lens
85 https://en.wikipedia.org/wiki/Direct_memory_access
86 https://en.wikipedia.org/wiki/Discrete_cosine_transform
87 https://en.wikipedia.org/wiki/Motion_estimation
88 https://en.wikipedia.org/wiki/Direct_memory_access

6.1. Theory of Operation 73

https://en.wikipedia.org/wiki/Image_processor
https://en.wikipedia.org/wiki/Color_balance
https://en.wikipedia.org/wiki/Bayer_filter
https://en.wikipedia.org/wiki/YUV#Y.E2.80.B2UV420p_.28and_Y.E2.80.B2V12_or_YV12.29_to_RGB888_conversion
https://en.wikipedia.org/wiki/Fisheye_lens
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://en.wikipedia.org/wiki/Motion_estimation
https://en.wikipedia.org/wiki/Direct_memory_access

Picamera 1.13 Documentation, Release 1.13

7. Coordinating these components is the VPU, the general purpose component in the GPU running VCOS
(ThreadX). The VPU configures and controls the other components in response to messages from VCHI.
Currently the most complete documentation of the VPU is available from the videocoreiv repository89.

BCM2835 SoC

ARM Cortex CPU VideoCore IV GPU

Linux

RAM

GPU memory
split

image
buffers

Camera

U
n
ic

a
m

VCHI VPU

JPEG
block

H264
block

ISP

streaming frame line
s

R
e
g
is

te
rs

①

②③⑤

⑥

⑦

④

6.1.7 Feedback loops

There are a couple of feedback loops running within the pipeline described above. When exposure_mode
(page 110) is not 'off', automatic gain control (AGC) gathers statistics from each frame (prior to the de-mosaic
phase in the ISP). It tweaks the analog and digital gains, and the exposure time (line read-out time) attempting to
nudge subsequent frames towards a target Y (luminance90) value.

Likewise, when awb_mode (page 107) is not 'off', automatic white balance (AWB) gathers statistics from
frames (again, prior to de-mosaic). Typically AWB analysis only occurs on 1 out of every 3 streamed frames as
it is computationally expensive. It adjusts the red and blue gains (awb_gains (page 106)) attempting to nudge
subsequent frames towards the expected color balance91.

89 https://github.com/hermanhermitage/videocoreiv
90 https://en.wikipedia.org/wiki/Relative_luminance
91 https://en.wikipedia.org/wiki/Color_balance

74 Chapter 6. Camera Hardware

https://github.com/hermanhermitage/videocoreiv
https://en.wikipedia.org/wiki/Relative_luminance
https://en.wikipedia.org/wiki/Color_balance

Picamera 1.13 Documentation, Release 1.13

You can observe the effect of the AGC loop quite easily during daylight. Ensure the camera module is pointed
at something bright like the sky or the view through a window, and query the camera’s analog gain and exposure
time:

>>> camera = PiCamera()
>>> camera.start_preview(alpha=192)
>>> float(camera.analog_gain)
1.0
>>> camera.exposure_speed
3318

Force the camera to use a higher gain by setting iso (page 115) to 800. If you have the preview running, you’ll see
very little difference in the scene. However, if you subsequently query the exposure time you’ll find the firmware
has drastically reduced it to compensate for the higher sensor gain:

>>> camera.iso = 800
>>> camera.exposure_speed
198

You can force a longer exposure time with the shutter_speed (page 119) attribute at which point the scene
will become quite washed out (because both the gain and exposure time are now fixed). If you let the gain float
again by setting iso (page 115) back to automatic (0) you should find the gain reduces accordingly and the scene
returns more or less to normal:

>>> camera.shutter_speed = 4000
>>> camera.exposure_speed
3998
>>> camera.iso = 0
>>> float(camera.analog_gain)
1.0

The camera’s AGC loop attempts to produce a scene with a target Y (luminance92) value (or values) within the
constraints set by things like ISO, shutter speed, and so forth. The target Y’ value can be adjusted with the
exposure_compensation (page 109) attribute which is measured in increments of 1/6th of an f-stop93. So
if, whilst the exposure time is fixed, you increase the luminance that the camera is aiming for by a couple of stops,
then wait a few seconds you should find that the gain has increased accordingly:

>>> camera.exposure_compensation = 12
>>> float(camera.analog_gain)
1.48046875

If you allow the exposure time to float once more (by setting shutter_speed (page 119) back to 0), then wait
a few seconds, you should find the analog gain decreases back to 1.0, but the exposure time increases to maintain
the deliberately over-exposed appearance of the scene:

>>> camera.shutter_speed = 0
>>> float(camera.analog_gain)
1.0
>>> camera.exposure_speed
4244

6.2 Sensor Modes

The Pi’s camera modules have a discrete set of modes that they can use to output data to the GPU. On the V1
module these are as follows:

92 https://en.wikipedia.org/wiki/Relative_luminance
93 https://en.wikipedia.org/wiki/F-number

6.2. Sensor Modes 75

https://en.wikipedia.org/wiki/Relative_luminance
https://en.wikipedia.org/wiki/F-number

Picamera 1.13 Documentation, Release 1.13

Resolution Aspect Ratio Framerates Video Image FoV Binning
1 1920x1080 16:9 1 < fps <= 30 x Partial None
2 2592x1944 4:3 1 < fps <= 15 x x Full None
3 2592x1944 4:3 1/6 <= fps <= 1 x x Full None
4 1296x972 4:3 1 < fps <= 42 x Full 2x2
5 1296x730 16:9 1 < fps <= 49 x Full 2x2
6 640x480 4:3 42 < fps <= 60 x Full 4x4
7 640x480 4:3 60 < fps <= 90 x Full 4x4

On the V2 module, these are:

Resolution Aspect Ratio Framerates Video Image FoV Binning
1 1920x1080 16:9 1/10 <= fps <= 30 x Partial None
2 3280x2464 4:3 1/10 <= fps <= 15 x x Full None
3 3280x2464 4:3 1/10 <= fps <= 15 x x Full None
4 1640x1232 4:3 1/10 <= fps <= 40 x Full 2x2
5 1640x922 16:9 1/10 <= fps <= 40 x Full 2x2
6 1280x720 16:9 40 < fps <= 90 x Partial 2x2
7 640x480 4:3 40 < fps <= 90 x Partial 2x2

Note: These are not the set of possible output resolutions or framerates. These are merely the set of resolutions
and framerates that the sensor can output directly to the GPU. The GPU’s ISP block will resize to any requested
resolution (within reason). Read on for details of mode selection.

Note: Sensor mode 3 on the V2 module appears to be a duplicate, but this is deliberate. The sensor modes of the
V2 module were designed to mimic the closest equivalent sensor modes of the V1 module. Long exposures on the
V1 module required a separate sensor mode; this wasn’t required on the V2 module leading to the duplication of
mode 2.

Modes with full field of view94 (FoV) capture from the whole area of the camera’s sensor (2592x1944 pixels for
the V1 camera, 3280x2464 for the V2 camera). Modes with partial FoV capture from the center of the sensor. The
combination of FoV limiting, and binning95 is used to achieve the requested resolution.

The image below illustrates the difference between full and partial field of view for the V1 camera:

94 https://en.wikipedia.org/wiki/Angle_of_view
95 http://www.andor.com/learning-academy/ccd-binning-what-does-binning-mean

76 Chapter 6. Camera Hardware

https://en.wikipedia.org/wiki/Angle_of_view
http://www.andor.com/learning-academy/ccd-binning-what-does-binning-mean

Picamera 1.13 Documentation, Release 1.13

While the various fields of view for the V2 camera are illustrated in the following image:

6.2. Sensor Modes 77

Picamera 1.13 Documentation, Release 1.13

The sensor’s mode can be forced with the sensor_mode parameter in the PiCamera (page 95) constructor (using
one of the values from the # column in the tables above). This parameter defaults to 0 indicating that the mode
should be selected automatically based on the requested resolution (page 117) and framerate (page 111).
The rules governing which sensor mode is selected are as follows:

• The capture mode must be acceptable. All modes can be used for video recording, or for image captures
from the video port (i.e. when use_video_port is True in calls to the various capture methods). Image
captures when use_video_port is False must use an image mode (of which only two exist, both with the
maximum resolution).

• The closer the requested resolution (page 117) is to the mode’s resolution the better, but downscaling
from a higher sensor resolution to a lower output resolution is preferable to upscaling from a lower sensor
resolution.

• The requested framerate (page 111) should be within the range of the sensor mode.

• The closer the aspect ratio of the requested resolution (page 117) to the mode’s resolution, the better.
Attempts to set resolutions with aspect ratios other than 4:3 or 16:9 (which are the only ratios directly
supported by the modes in the tables above) will choose the mode which maximizes the resulting field of
view96 (FoV).

A few examples are given below to clarify the operation of this heuristic (note these examples assume the V1
camera module):

• If you set the resolution (page 117) to 1024x768 (a 4:3 aspect ratio), and framerate (page 111) to
anything less than 42fps, the 1296x972 mode (4) will be selected, and the GPU will downscale the result to
1024x768.

• If you set the resolution (page 117) to 1280x720 (a 16:9 wide-screen aspect ratio), and framerate

96 https://en.wikipedia.org/wiki/Angle_of_view

78 Chapter 6. Camera Hardware

https://en.wikipedia.org/wiki/Angle_of_view
https://en.wikipedia.org/wiki/Angle_of_view

Picamera 1.13 Documentation, Release 1.13

(page 111) to anything less than 49fps, the 1296x730 mode (5) will be selected and downscaled appropri-
ately.

• Setting resolution (page 117) to 1920x1080 and framerate (page 111) to 30fps exceeds the reso-
lution of both the 1296x730 and 1296x972 modes (i.e. they would require upscaling), so the 1920x1080
mode (1) is selected instead, despite it having a reduced FoV.

• A resolution (page 117) of 800x600 and a framerate (page 111) of 60fps will select the 640x480
60fps mode, even though it requires upscaling because the algorithm considers the framerate to take prece-
dence in this case.

• Any attempt to capture an image without using the video port will (temporarily) select the 2592x1944 mode
while the capture is performed (this is what causes the flicker you sometimes see when a preview is running
while a still image is captured).

6.3 Hardware Limits

The are additional limits imposed by the GPU hardware that performs all image and video processing:

• The maximum resolution for MJPEG recording depends partially on GPU memory. If you get “Out of
resource” errors with MJPEG recording at high resolutions, try increasing gpu_mem in /boot/config.
txt.

• The maximum horizontal resolution for default H264 recording is 1920 (this is a limit of the H264 block in
the GPU). Any attempt to record H264 video at higher horizontal resolutions will fail.

• The maximum resolution of the V2 camera may require additional GPU memory when operating at low
framerates (<1fps). Increase gpu_mem in /boot/config.txt if you encounter “out of resources”
errors when attempting long-exposure captures with a V2 module.

• The maximum resolution of the V2 camera can also cause issues with previews. Currently, picamera runs
previews at the same resolution as captures (equivalent to -fp in raspistill). You may need to increase
gpu_mem in /boot/config.txt to achieve full resolution operation with the V2 camera module, or
configure the preview to use a lower resolution (page 134) than the camera itself.

• The maximum framerate of the camera depends on several factors. With overclocking, 120fps has been
achieved on a V2 module but 90fps is the maximum supported framerate.

• The maximum exposure time is currently 6 seconds on the V1 camera module, and 10 seconds on the V2
camera module. Remember that exposure time is limited by framerate, so you need to set an extremely slow
framerate (page 111) before setting shutter_speed (page 119).

6.4 MMAL

The MMAL layer below picamera provides a greatly simplified interface to the camera firmware running on
the GPU. Conceptually, it presents the camera with three “ports”: the still port, the video port, and the preview
port. The following sections describe how these ports are used by picamera and how they influence the camera’s
behaviour.

6.4.1 The Still Port

Firstly, the still port. Whenever this is used to capture images, it (briefly) forces the camera’s mode to one of
the two supported still modes (see Sensor Modes (page 75)) so that images are captured using the full area of the
sensor. It also uses a strong noise reduction algorithm on captured images so that they appear higher quality.

The still port is used by the various capture() (page 97) methods when their use_video_port parameter is
False (which it is by default).

6.3. Hardware Limits 79

Picamera 1.13 Documentation, Release 1.13

6.4.2 The Video Port

The video port is somewhat simpler in that it never changes the camera’s mode. The video port is used by the
start_recording() (page 103) method (for recording video), and is also used by the various capture()
(page 97) methods when their use_video_port parameter is True. Images captured from the video port tend to
have a “grainy” appearance, much more akin to a video frame than the images captured by the still port (this is
due to the still port using the stronger noise reduction algorithm).

6.4.3 The Preview Port

The preview port operates more or less identically to the video port. The preview port is always connected
to some form of output to ensure that the auto-gain algorithm can run. When an instance of PiCamera
(page 95) is constructed, the preview port is initially connected to an instance of PiNullSink (page 134).
When start_preview() (page 103) is called, this null sink is destroyed and the preview port is connected to
an instance of PiPreviewRenderer (page 134). The reverse occurs when stop_preview() (page 104) is
called.

6.4.4 Pipelines

This section attempts to provide detail of what MMAL pipelines picamera constructs in response to various method
calls.

The firmware provides various encoders which can be attached to the still and video ports for the purpose of
producing output (e.g. JPEG images or H.264 encoded video). A port can have a single encoder attached to it at
any given time (or nothing if the port is not in use).

Encoders are connected directly to the still port. For example, when capturing a picture using the still port, the
camera’s state conceptually moves through these states:

Still
Port

Video
Port

Preview
Port

Capture res
1440x1080

Output res
640x480C

a
m

e
ra

JPEG
Encoder

Splitter Output
File

Still
Port

Video
Port

Preview
Port

Capture res
2592x1944

Output res
640x480C
a
m

e
ra

Splitter

Still port forces capture
resolution to change

during capture

1. Before capture

3. After capture

2. During capture

As you have probably noticed in the diagram above, the video port is a little more complex. In order to permit
simultaneous video recording and image capture via the video port, a “splitter” component is permanently con-
nected to the video port by picamera, and encoders are in turn attached to one of its four output ports (numbered
0, 1, 2, and 3). Hence, when recording video the camera’s setup looks like this:

Still
Port

Video
Port

Preview
Port

H.264
Encoder

Splitter

Capture res
1440x1080

Output res
640x480C

a
m

e
ra

Output
File

Still
Port

Video
Port

Preview
Port

Splitter
Capture res
1440x1080

Output res
640x480C

a
m

e
ra

Capture resolution
unaffected by video

port usage

1. Before record 2. During record

3. After record

80 Chapter 6. Camera Hardware

Picamera 1.13 Documentation, Release 1.13

And when simultaneously capturing images via the video port whilst recording, the camera’s configuration moves
through the following states:

Still
Port

Video
Port

Preview
Port

H.264
Encoder

Splitter

Capture res
1440x1080

Output res
640x480C

a
m
e
ra

Output
File

Still
Port

Video
Port

Preview
Port

Splitter
Capture res
1440x1080

Output res
640x480C

a
m
e
ra

1. Before record 2. During record

5. After record

H.264
Encoder

Output
File

Still
Port

Video
Port

Preview
Port

Splitter
Capture res
1440x1080

Output res
640x480C

a
m
e
ra

JPEG
Encoder

Output
File

3. During capture whilst recording

4. Continue recording

When the resize parameter is passed to one of the aforementioned methods, a resizer component is placed
between the camera’s ports and the encoder, causing the output to be resized before it reaches the encoder. This
is particularly useful for video recording, as the H.264 encoder cannot cope with full resolution input (the GPU
hardware can only handle frame widths up to 1920 pixels). Hence, when performing full frame video recording,
the camera’s setup looks like this:

Still
Port

Video
Port

Preview
Port

H.264
Encoder

Splitter
Resizer

Capture res
2592x1944

Output res
2592x1944C

a
m

e
ra

Output
File

Camera output resolution
set to max to force capture
resolution to max

Still
Port

Video
Port

Preview
Port

Capture res
2592x1944

Output res
2592x1944C

a
m

e
ra

Splitter

resize=(1024, 768)

1. Before record
2. During record

3. After record

Finally, when performing unencoded captures an encoder is (naturally) not required. Instead data is taken directly
from the camera’s ports. However, various firmware limitations require acrobatics in the pipeline to achieve
requested encodings.

For example, in older firmwares the camera’s still port cannot be configured for RGB output (due to a faulty buffer
size check). However, they can be configured for YUV output so in this case picamera configures the still port
for YUV output, attaches as resizer (configured with the same input and output resolution), then configures the
resizer’s output for RGBA (the resizer doesn’t support RGB for some reason). It then runs the capture and strips
the redundant alpha bytes off the data.

Recent firmwares fix the buffer size check, so with these picamera will simply configure the still port for RGB
output (since 1.11):

6.4. MMAL 81

Picamera 1.13 Documentation, Release 1.13

Still
Port

Video
Port

Preview
Port Splitter

Resizer
Capture res
2592x1944

Output res
640x480C

a
m

e
ra Output

File

During RGB still-port capture
(new firmware)

Still
Port

Video
Port

Preview
Port Splitter

Capture res
2592x1944

Output res
640x480C

a
m

e
ra

Output
File

During RGB video-port capture
(old firmware)

RGB

Resizer configured
for same resolution

as output (unless resize
is specified)

RGBA

YUV

6.4.5 Encodings

The ports used to connect MMAL components together pass image data around in particular encodings. Often,
this is the YUV42097 encoding (this is the “preferred” internal format for the pipeline). On rare occasions, it is
RGB98 (RGB is a large and rather inefficient format). However, another format sometimes used is the “OPAQUE”
encoding.

“OPAQUE” is the most efficient encoding to use when connecting MMAL components as it simply passes pointers
around under the hood rather than full frame data (as such it’s not really an encoding at all, but it’s treated as such
by the MMAL framework). However, not all OPAQUE encodings are equivalent:

• The preview port’s OPAQUE encoding contains a single image.

• The video port’s OPAQUE encoding contains two images (used for motion estimation by various encoders).

• The still port’s OPAQUE encoding contains strips of a single image.

• The JPEG image encoder accepts the still port’s OPAQUE strips format.

• The MJPEG video encoder does not accept the OPAQUE strips format, only the single and dual image
variants provided by the preview or video ports.

• The H264 video encoder in older firmwares only accepts the dual image OPAQUE format (it will accept
full-frame YUV input instead though). In newer firmwares it now accepts the single image OPAQUE format
too (presumably constructing the second image itself for motion estimation).

• The splitter accepts single or dual image OPAQUE input, but only outputs single image OPAQUE input (or
YUV; in later firmwares it also supports RGB or BGR output).

• The VPU resizer (MMALResizer (page 177)) theoretically accepts OPAQUE input (though the author
hasn’t managed to get this working at the time of writing) but will only produce YUV, RGBA, and BGRA
output, not RGB or BGR.

• The ISP resizer (MMALISPResizer (page 178), not currently used by picamera’s high level API, but avail-
able from the mmalobj (page 161) layer) accepts OPAQUE input, and will produce almost any unencoded
output (including YUV, RGB, BGR, RGBA, and BGRA) but not OPAQUE.

The mmalobj (page 161) layer introduced in picamera 1.11 is aware of these OPAQUE encoding differences and
attempts to configure connections between components using the most efficient formats possible. However, it is
not aware of firmware revisions so if you’re playing with MMAL components via this layer be prepared to do
some tinkering to get your pipeline working.

Please note that the description above is MMAL’s greatly simplified presentation of the imaging pipeline. This is
far removed from what actually happens at the GPU’s ISP level (described roughly in earlier sections). However,
as MMAL is the API under-pinning the picamera library (along with the official raspistill and raspivid
applications) it is worth understanding.

In other words, by using picamera you are passing through (at least) two abstraction layers which necessarily
obscure (but hopefully simplify) the “true” operation of the camera.

97 https://en.wikipedia.org/wiki/YUV#Y.E2.80.B2UV420p_.28and_Y.E2.80.B2V12_or_YV12.29_to_RGB888_conversion
98 https://en.wikipedia.org/wiki/RGB

82 Chapter 6. Camera Hardware

https://en.wikipedia.org/wiki/YUV#Y.E2.80.B2UV420p_.28and_Y.E2.80.B2V12_or_YV12.29_to_RGB888_conversion
https://en.wikipedia.org/wiki/RGB

CHAPTER 7

Development

The main GitHub repository for the project can be found at:

https://github.com/waveform80/picamera

Anyone is more than welcome to open tickets to discuss bugs, new features, or just to ask usage questions (I find
this useful for gauging what questions ought to feature in the FAQ, for example).

For anybody wishing to hack on the project, I would strongly recommend reading through the PiCamera
(page 95) class’ source, to get a handle on using the mmalobj (page 161) layer. This is a layer introduced in pi-
camera 1.11 to ease the usage of libmmal (the underlying library that picamera, raspistill, and raspivid
all rely upon).

Beneath mmalobj (page 161) is a ctypes99 translation of the libmmal headers but my hope is that most
developers will never need to deal with this directly (thus, a working knowledge of C is hopefully no longer
necessary to hack on picamera).

Various classes for specialized applications also exist (PiCameraCircularIO (page 125), PiBayerArray
(page 155), etc.)

Even if you don’t feel up to hacking on the code, I’d love to hear suggestions from people of what you’d like the
API to look like (even if the code itself isn’t particularly pythonic, the interface should be)!

7.1 Development installation

If you wish to develop picamera itself, it is easiest to obtain the source by cloning the GitHub repository and
then use the “develop” target of the Makefile which will install the package as a link to the cloned repository
allowing in-place development (it also builds a tags file for use with vim/emacs with Exuberant’s ctags utility).
The following example demonstrates this method within a virtual Python environment:

$ sudo apt-get install lsb-release build-essential git git-core \
> exuberant-ctags virtualenvwrapper python-virtualenv python3-virtualenv \
> python-dev python3-dev libjpeg8-dev zlib1g-dev libav-tools
$ cd
$ mkvirtualenv -p /usr/bin/python3 picamera
$ workon picamera
(picamera) $ git clone https://github.com/waveform80/picamera.git

(continues on next page)

99 https://docs.python.org/3.4/library/ctypes.html#module-ctypes

83

https://github.com/waveform80/picamera
https://docs.python.org/3.4/library/ctypes.html#module-ctypes

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

(picamera) $ cd picamera
(picamera) $ make develop

To pull the latest changes from git into your clone and update your installation:

$ workon picamera
(picamera) $ cd ~/picamera
(picamera) $ git pull
(picamera) $ make develop

To remove your installation, destroy the sandbox and the clone:

(picamera) $ deactivate
$ rmvirtualenv picamera
$ rm -fr ~/picamera

7.2 Building the docs

If you wish to build the docs, you’ll need a few more dependencies. Inkscape is used for conversion of SVGs to
other formats, Graphviz is used for rendering certain charts, and TeX Live is required for building PDF output.
The following command should install all required dependencies:

$ sudo apt-get install texlive-latex-recommended texlive-latex-extra \
texlive-fonts-recommended graphviz inkscape

Once these are installed, you can use the “doc” target to build the documentation:

$ workon picamera
(picamera) $ cd ~/picamera
(picamera) $ make doc

The HTML output is written to docs/_build/html while the PDF output goes to docs/_build/latex.

7.3 Test suite

If you wish to run the picamera test suite, follow the instructions in Development installation (page 83) above and
then make the “test” target within the sandbox:

$ workon picamera
(picamera) $ cd ~/picamera
(picamera) $ make test

Warning: The test suite takes a very long time to execute (at least 1 hour on an overclocked Pi 3). Depending
on configuration, it can also lockup the camera requiring a reboot to reset, so ensure you are familiar with SSH
or using alternate TTYs to access a command line in the event you need to reboot.

84 Chapter 7. Development

CHAPTER 8

Deprecated Functionality

The picamera library is (at the time of writing) nearly a year old and has grown quite rapidly in this time. Occasion-
ally, when adding new functionality to the library, the API is obvious and natural (e.g. start_recording()
(page 103) and stop_recording() (page 105)). At other times, it’s been less obvious (e.g. unencoded cap-
tures) and my initial attempts have proven to be less than ideal. In such situations I’ve endeavoured to improve the
API without breaking backward compatibility by introducing new methods or attributes and deprecating the old
ones.

This means that, as of release 1.8, there’s quite a lot of deprecated functionality floating around the library which
it would be nice to tidy up, partly to simplify the library for debugging, and partly to simplify it for new users. To
assuage any fears that I’m imminently going to break backward compatibility: I intend to leave a gap of at least
a year between deprecating functionality and removing it, hopefully providing ample time for people to migrate
their scripts.

Furthermore, to distinguish any release which is backwards incompatible, I would increment the major version
number in accordance with semantic versioning100. In other words, the first release in which currently deprecated
functionality would be removed would be version 2.0, and as of the release of 1.8 it’s at least a year away. Any
future 1.x releases will include all currently deprecated functions.

Of course, that still means people need a way of determining whether their scripts use any deprecated functionality
in the picamera library. All deprecated functionality is documented, and the documentation includes pointers
to the intended replacement functionality (see raw_format (page 117) for example). However, Python also
provides excellent methods for determining automatically whether any deprecated functionality is being used via
the warnings101 module.

8.1 Finding and fixing deprecated usage

As of release 1.8, all deprecated functionality will raise DeprecationWarning102 when used. By default,
the Python interpreter suppresses these warnings (as they’re only of interest to developers, not users) but you can
easily configure different behaviour.

The following example script uses a number of deprecated functions:

100 http://semver.org/
101 https://docs.python.org/3.4/library/warnings.html#module-warnings
102 https://docs.python.org/3.4/library/exceptions.html#DeprecationWarning

85

http://semver.org/
https://docs.python.org/3.4/library/warnings.html#module-warnings
https://docs.python.org/3.4/library/exceptions.html#DeprecationWarning

Picamera 1.13 Documentation, Release 1.13

import io
import time
import picamera

with picamera.PiCamera() as camera:
camera.resolution = (1280, 720)
camera.framerate = (24, 1)
camera.start_preview()
camera.preview_fullscreen = True
camera.preview_alpha = 128
time.sleep(2)
camera.raw_format = 'yuv'
stream = io.BytesIO()
camera.capture(stream, 'raw', use_video_port=True)

Despite using deprecated functionality the script runs happily (and silently) with picamera 1.8. To discover what
deprecated functions are being used, we add a couple of lines to tell the warnings module that we want “default”
handling of DeprecationWarning103; “default” handling means that the first time an attempt is made to raise
this warning at a particular location, the warning’s details will be printed to the console. All future invocations
from the same location will be ignored. This saves flooding the console with warning details from tight loops.
With this change, the script looks like this:

import io
import time
import picamera

import warnings
warnings.filterwarnings('default', category=DeprecationWarning)

with picamera.PiCamera() as camera:
camera.resolution = (1280, 720)
camera.framerate = (24, 1)
camera.start_preview()
camera.preview_fullscreen = True
camera.preview_alpha = 128
time.sleep(2)
camera.raw_format = 'yuv'
stream = io.BytesIO()
camera.capture(stream, 'raw', use_video_port=True)

And produces the following output on the console when run:

/usr/share/pyshared/picamera/camera.py:149: DeprecationWarning: Setting framerate
→˓or gains as a tuple is deprecated; please use one of Python's many numeric
→˓classes like int, float, Decimal, or Fraction instead
"Setting framerate or gains as a tuple is deprecated; "

/usr/share/pyshared/picamera/camera.py:3125: DeprecationWarning: PiCamera.preview_
→˓fullscreen is deprecated; use PiCamera.preview.fullscreen instead
'PiCamera.preview_fullscreen is deprecated; '

/usr/share/pyshared/picamera/camera.py:3068: DeprecationWarning: PiCamera.preview_
→˓alpha is deprecated; use PiCamera.preview.alpha instead
'PiCamera.preview_alpha is deprecated; use '

/usr/share/pyshared/picamera/camera.py:1833: DeprecationWarning: PiCamera.raw_
→˓format is deprecated; use required format directly with capture methods instead
'PiCamera.raw_format is deprecated; use required format '

/usr/share/pyshared/picamera/camera.py:1359: DeprecationWarning: The "raw" format
→˓option is deprecated; specify the required format directly instead ("yuv", "rgb",
→˓ etc.)
'The "raw" format option is deprecated; specify the '

/usr/share/pyshared/picamera/camera.py:1827: DeprecationWarning: PiCamera.raw_
→˓format is deprecated; use required format directly with capture methods instead(continues on next page)

103 https://docs.python.org/3.4/library/exceptions.html#DeprecationWarning

86 Chapter 8. Deprecated Functionality

https://docs.python.org/3.4/library/exceptions.html#DeprecationWarning

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

'PiCamera.raw_format is deprecated; use required format '

This tells us which pieces of deprecated functionality are being used in our script, but it doesn’t tell us where in
the script they were used. For this, it is more useful to have warnings converted into full blown exceptions. With
this change, each time a DeprecationWarning104 would have been printed, it will instead cause the script to
terminate with an unhandled exception and a full stack trace:

import io
import time
import picamera

import warnings
warnings.filterwarnings('error', category=DeprecationWarning)

with picamera.PiCamera() as camera:
camera.resolution = (1280, 720)
camera.framerate = (24, 1)
camera.start_preview()
camera.preview_fullscreen = True
camera.preview_alpha = 128
time.sleep(2)
camera.raw_format = 'yuv'
stream = io.BytesIO()
camera.capture(stream, 'raw', use_video_port=True)

Now when we run the script it produces the following:

Traceback (most recent call last):
File "test_deprecated.py", line 10, in <module>
camera.framerate = (24, 1)

File "/usr/share/pyshared/picamera/camera.py", line 1888, in _set_framerate
n, d = to_rational(value)

File "/usr/share/pyshared/picamera/camera.py", line 149, in to_rational
"Setting framerate or gains as a tuple is deprecated; "

DeprecationWarning: Setting framerate or gains as a tuple is deprecated; please
→˓use one of Python's many numeric classes like int, float, Decimal, or Fraction
→˓instead

This tells us that line 10 of our script is using deprecated functionality, and provides a hint of how to fix it. We
change line 10 to use an int instead of a tuple for the framerate. Now we run again, and this time get the following:

Traceback (most recent call last):
File "test_deprecated.py", line 12, in <module>
camera.preview_fullscreen = True

File "/usr/share/pyshared/picamera/camera.py", line 3125, in _set_preview_
→˓fullscreen

'PiCamera.preview_fullscreen is deprecated; '
DeprecationWarning: PiCamera.preview_fullscreen is deprecated; use PiCamera.
→˓preview.fullscreen instead

Now we can tell line 12 has a problem, and once again the exception tells us how to fix it. We continue in this
fashion until the script looks like this:

import io
import time
import picamera

import warnings
warnings.filterwarnings('error', category=DeprecationWarning)

(continues on next page)

104 https://docs.python.org/3.4/library/exceptions.html#DeprecationWarning

8.1. Finding and fixing deprecated usage 87

https://docs.python.org/3.4/library/exceptions.html#DeprecationWarning

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

with picamera.PiCamera() as camera:
camera.resolution = (1280, 720)
camera.framerate = 24
camera.start_preview()
camera.preview.fullscreen = True
camera.preview.alpha = 128
time.sleep(2)
stream = io.BytesIO()
camera.capture(stream, 'yuv', use_video_port=True)

The script now runs to completion, so we can be confident it’s no longer using any deprecated functionality and
will run happily even when this functionality is removed in release 2.0. At this point, you may wish to remove the
filterwarnings line as well (or at least comment it out).

8.2 List of deprecated functionality

For convenience, all currently deprecated functionality is detailed below. You may wish to skim this list to check
whether you’re currently using deprecated functions, but I would urge users to take advantage of the warnings
system documented in the prior section as well.

8.2.1 Unencoded captures

In very early versions of picamera, unencoded captures were created by specifying the 'raw' format with the
capture() (page 97) method, with the raw_format (page 117) attribute providing the actual encoding. The
attribute is deprecated, as is usage of the value 'raw' with the format parameter of all the capture methods.

The deprecated method of taking unencoded captures looks like this:

camera.raw_format = 'rgb'
camera.capture('output.data', format='raw')

In such cases, simply remove references to raw_format (page 117) and place the required format directly within
the capture() (page 97) call:

camera.capture('output.data', format='rgb')

8.2.2 Recording quality

The quantization parameter for start_recording() (page 103) and record_sequence() (page 101) is
deprecated in favor of the quality parameter; this change was made to keep the recording methods consistent with
the capture methods, and to make the meaning of the parameter more obvious to newcomers. The values of the
parameter remain the same (i.e. 1-100 for MJPEG recordings with higher values indicating higher quality, and
1-40 for H.264 recordings with lower values indicating higher quality).

The deprecated method of setting recording quality looks like this:

camera.start_recording('foo.h264', quantization=25)

Simply replace the quantization parameter with the quality parameter like so:

camera.start_recording('foo.h264', quality=25)

88 Chapter 8. Deprecated Functionality

Picamera 1.13 Documentation, Release 1.13

8.2.3 Fractions as tuples

Several attributes in picamera expect rational (fractional) values. In early versions of picamera, these values
could only be specified as a tuple expressed as (numerator, denominator). In later versions, support was
expanded to accept any of Python’s numeric types.

The following code illustrates the deprecated usage of a tuple representing a rational value:

camera.framerate = (24, 1)

Such cases can be replaced with any of Python’s numeric types, including int105, float106, Decimal107, and
Fraction108. All the following examples are functionally equivalent to the deprecated example above:

from decimal import Decimal
from fractions import Fraction

camera.framerate = 24
camera.framerate = 24.0
camera.framerate = Fraction(72, 3)
camera.framerate = Decimal('24')
camera.framerate = Fraction('48/2')

These attributes return a Fraction109 instance as well, but one modified to permit access as a tuple in order
to maintain backward compatibility. This is also deprecated behaviour. The following example demonstrates
accessing the framerate (page 111) attribute as a tuple:

n, d = camera.framerate
print('The framerate is %d/%d fps' % (n, d))

In such cases, use the standard numerator110 and denominator111 attributes of the returned fraction instead:

f = camera.framerate
print('The framerate is %d/%d fps' % (f.numerator, f.denominator))

Alternatively, you may wish to simply convert the Fraction112 instance to a float113 for greater convenience:

f = float(camera.framerate)
print('The framerate is %0.2f fps' % f)

8.2.4 Preview functions

Release 1.8 introduced rather sweeping changes to the preview system to incorporate the ability to create mul-
tiple static overlays on top of the preview. As a result, the preview system is no longer incorporated into the
PiCamera (page 95) class. Instead, it is represented by the preview (page 117) attribute which is a separate
PiPreviewRenderer (page 134) instance when the preview is active.

This change meant that preview_alpha (page 117) was deprecated in favor of the alpha (page 131) prop-
erty of the new preview (page 117) attribute. Similar changes were made to preview_layer (page 117),
preview_fullscreen (page 117), and preview_window (page 117). The following snippet illustrates the
deprecated method of setting preview related attributes:

105 https://docs.python.org/3.4/library/stdtypes.html#typesnumeric
106 https://docs.python.org/3.4/library/stdtypes.html#typesnumeric
107 https://docs.python.org/3.4/library/decimal.html#decimal.Decimal
108 https://docs.python.org/3.4/library/fractions.html#fractions.Fraction
109 https://docs.python.org/3.4/library/fractions.html#fractions.Fraction
110 https://docs.python.org/3.4/library/fractions.html#fractions.Fraction.numerator
111 https://docs.python.org/3.4/library/fractions.html#fractions.Fraction.denominator
112 https://docs.python.org/3.4/library/fractions.html#fractions.Fraction
113 https://docs.python.org/3.4/library/stdtypes.html#typesnumeric

8.2. List of deprecated functionality 89

https://docs.python.org/3.4/library/stdtypes.html#typesnumeric
https://docs.python.org/3.4/library/stdtypes.html#typesnumeric
https://docs.python.org/3.4/library/decimal.html#decimal.Decimal
https://docs.python.org/3.4/library/fractions.html#fractions.Fraction
https://docs.python.org/3.4/library/fractions.html#fractions.Fraction
https://docs.python.org/3.4/library/fractions.html#fractions.Fraction.numerator
https://docs.python.org/3.4/library/fractions.html#fractions.Fraction.denominator
https://docs.python.org/3.4/library/fractions.html#fractions.Fraction
https://docs.python.org/3.4/library/stdtypes.html#typesnumeric

Picamera 1.13 Documentation, Release 1.13

camera.start_preview()
camera.preview_alpha = 128
camera.preview_fullscreen = False
camera.preview_window = (0, 0, 640, 480)

In this case, where preview attributes are altered after the preview has been activated, simply modify the corre-
sponding attributes on the preview object:

camera.start_preview()
camera.preview.alpha = 128
camera.preview.fullscreen = False
camera.preview.window = (0, 0, 640, 480)

Unfortuantely, this simple change is not possible when preview attributes are altered before the preview has been
activated, as the preview (page 117) attribute is None when the preview is not active. To accomodate this
use-case, optional parameters were added to start_preview() (page 103) to provide initial settings for the
preview renderer. The following example illustrates the deprecated method of setting preview related attribtues
prior to activating the preview:

camera.preview_alpha = 128
camera.preview_fullscreen = False
camera.preview_window = (0, 0, 640, 480)
camera.start_preview()

Remove the lines setting the attributes, and use the corresponding keyword parameters of the
start_preview() (page 103) method instead:

camera.start_preview(
alpha=128, fullscreen=False, window=(0, 0, 640, 480))

Finally, the previewing (page 117) attribute is now obsolete (and thus deprecated) as its functionality can be
trivially obtained by checking the preview (page 117) attribute. The following example illustrates the depre-
cated method of checking whether the preview is activate:

if camera.previewing:
print('The camera preview is running')

else:
print('The camera preview is not running')

Simply replace previewing (page 117) with preview (page 117) to bring this code up to date:

if camera.preview:
print('The camera preview is running')

else:
print('The camera preview is not running')

8.2.5 Array stream truncation

In release 1.8, the base PiArrayOutput (page 153) class was changed to derive from io.BytesIO114 in order
to add support for seeking, and to improve performance. The prior implementation had been non-seekable, and
therefore to accommodate re-use of the stream between captures the truncate() (page 153) method had an
unusual side-effect not seen with regular Python streams: after truncation, the position of the stream was set to the
new length of the stream. In all other Python streams, the truncate method doesn’t affect the stream position.
The method is overridden in 1.8 to maintain its unusual behaviour, but this behaviour is nonetheless deprecated.

The following snippet illustrates the method of truncating an array stream in picamera versions 1.7 and older:
114 https://docs.python.org/3.4/library/io.html#io.BytesIO

90 Chapter 8. Deprecated Functionality

https://docs.python.org/3.4/library/io.html#io.BytesIO

Picamera 1.13 Documentation, Release 1.13

with picamera.array.PiYUVArray(camera) as stream:
for i in range(3):

camera.capture(stream, 'yuv')
print(stream.array.shape)
stream.truncate(0)

If you only need your script to work with picamera versions 1.8 and newer, such code should be updated to use
seek and truncate as you would with any regular Python stream instance:

with picamera.array.PiYUVArray(camera) as stream:
for i in range(3):

camera.capture(stream, 'yuv')
print(stream.array.shape)
stream.seek(0)
stream.truncate()

Unfortunately, this will not work if your script needs to work with prior versions of picamera as well (since such
streams were non-seekable in prior versions). In this case, call seekable() to determine the correct course of
action:

with picamera.array.PiYUVArray(camera) as stream:
for i in range(3):

camera.capture(stream, 'yuv')
print(stream.array.shape)
if stream.seekable():

stream.seek(0)
stream.truncate()

else:
stream.truncate(0)

8.2.6 Confusing crop

In release 1.8, the crop (page 108) attribute was renamed to zoom (page 120); the old name was retained as a
deprecated alias for backward compatibility. This change was made as crop was a thoroughly misleading name
for the attribute (which actually sets the “region of interest” for the sensor), leading to numerous support questions.

The following example illustrates the deprecated attribute name:

camera.crop = (0.25, 0.25, 0.5, 0.5)

Simply replace crop (page 108) with zoom (page 120) in such cases:

camera.zoom = (0.25, 0.25, 0.5, 0.5)

8.2.7 Incorrect ISO capitalisation

In release 1.8, the ISO (page 105) attribute was renamed to iso (page 115) for compliance with PEP-8115 (even
though it’s an acronym this is still more consistent with the existing API; consider led (page 116), awb_mode
(page 107), and so on).

The following example illustrates the deprecated attribute case:

camera.ISO = 100

Simply replace references to ISO (page 105) with iso (page 115):

115 http://legacy.python.org/dev/peps/pep-0008/

8.2. List of deprecated functionality 91

http://legacy.python.org/dev/peps/pep-0008/

Picamera 1.13 Documentation, Release 1.13

camera.iso = 100

8.2.8 Frame types

Over time, several capabilities were added to the H.264 encoder in the GPU firmware. This expanded the number
of possible frame types from a simple key-frame / non-key-frame affair, to a multitude of possibilities (P-frame,
I-frame, SPS/PPS header, motion vector data, and who knows in future). Rather than keep adding more and more
boolean fields to the PiVideoFrame (page 121) named tuple, release 1.5 introduced the PiVideoFrameType
(page 120) enumeration used by the frame_type (page 121) attribute and deprecated the keyframe (page 122)
and header (page 121) attributes.

The following code illustrates usage of the deprecated boolean fields:

if camera.frame.keyframe:
handle_keyframe()

elif camera.frame.header:
handle_header()

else:
handle_frame()

In such cases, test the frame_type (page 121) attribute against the corresponding value of the
PiVideoFrameType (page 120) enumeration:

if camera.frame.frame_type == picamera.PiVideoFrameType.key_frame:
handle_keyframe()

elif camera.frame.frame_type == picamera.PiVideoFrameType.sps_header:
handle_header()

else:
handle_frame()

Alternatively, you may find something like this more elegant (and more future proof as it’ll throw a KeyError116

in the event of an unrecognized frame type):

handler = {
picamera.PiVideoFrameType.key_frame: handle_keyframe,
picamera.PiVideoFrameType.sps_header: handle_header,
picamera.PiVideoFrameType.frame: handle_frame,
}[camera.frame.frame_type]

handler()

8.2.9 Annotation background color

In release 1.10, the annotate_background (page 105) attribute was enhanced to support setting the back-
ground color of annotation text. Older versions of picamera treated this attribute as a bool (False for no back-
ground, True to draw a black background).

In order to provide the new functionality while maintaining a certain amount of backward compatibility, the new
attribute accepts None for no background and a Color (page 147) instance for a custom background color. It
is worth noting that the truth values of None and False are equivalent, as are the truth values of a Color
(page 147) instance and True. Hence, naive tests against the attribute value will continue to work.

The following example illustrates the deprecated behaviour of setting the attribute as a boolean:

camera.annotate_background = False
camera.annotate_background = True

116 https://docs.python.org/3.4/library/exceptions.html#KeyError

92 Chapter 8. Deprecated Functionality

https://docs.python.org/3.4/library/exceptions.html#KeyError

Picamera 1.13 Documentation, Release 1.13

In such cases, replace False with None, and True with a Color (page 147) instance of your choosing. Bear in
mind that older Pi firmwares can only produce a black background, so you may wish to stick with black to ensure
equivalent behaviour:

camera.annotate_background = None
camera.annotate_background = picamera.Color('black')

Naive tests against the attribute should work as normal, but specific tests (which are considered bad practice
anyway), should be re-written. The following example illustrates specific boolean tests:

if camera.annotate_background == False:
pass

if camera.annotate_background is True:
pass

Such cases should be re-written to remove the specific boolean value mentioned in the test (this is a general rule,
not limited to this deprecation case):

if not camera.annotate_background:
pass

if camera.annotate_background:
pass

8.2.10 Analysis classes use analyze

The various analysis classes in picamera.array (page 153) were adjusted in 1.11 to use analyze()
(page 157) (US English spelling) instead of analyse (UK English spelling). The following example illustrates
the old usage:

import picamera.array

class MyAnalyzer(picamera.array.PiRGBAnalysis):
def analyse(self, array):

print('Array shape:', array.shape)

This should simply be re-written as:

import picamera.array

class MyAnalyzer(picamera.array.PiRGBAnalysis):
def analyze(self, array):

print('Array shape:', array.shape)

8.2. List of deprecated functionality 93

Picamera 1.13 Documentation, Release 1.13

94 Chapter 8. Deprecated Functionality

CHAPTER 9

API - The PiCamera Class

The picamera library contains numerous classes, but the primary one that all users are likely to interact with
is PiCamera (page 95), documented below. With the exception of the contents of the picamera.array
(page 153) module, all classes in picamera are accessible from the package’s top level namespace. In other words,
the following import is sufficient to import everything in the library (excepting the contents of picamera.
array (page 153)):

import picamera

9.1 PiCamera

class picamera.PiCamera(camera_num=0, stereo_mode=’none’, stereo_decimate=False, res-
olution=None, framerate=None, sensor_mode=0, led_pin=None,
clock_mode=’reset’, framerate_range=None)

Provides a pure Python interface to the Raspberry Pi’s camera module.

Upon construction, this class initializes the camera. The camera_num parameter (which defaults to 0)
selects the camera module that the instance will represent. Only the Raspberry Pi compute module currently
supports more than one camera.

The sensor_mode, resolution, framerate, framerate_range, and clock_mode parameters provide ini-
tial values for the sensor_mode (page 118), resolution (page 117), framerate (page 111),
framerate_range (page 113), and clock_mode (page 107) attributes of the class (these attributes
are all relatively expensive to set individually, hence setting them all upon construction is a speed optimiza-
tion). Please refer to the attribute documentation for more information and default values.

The stereo_mode and stereo_decimate parameters configure dual cameras on a compute module for
sterescopic mode. These parameters can only be set at construction time; they cannot be altered later
without closing the PiCamera (page 95) instance and recreating it. The stereo_mode parameter defaults
to 'none' (no stereoscopic mode) but can be set to 'side-by-side' or 'top-bottom' to activate
a stereoscopic mode. If the stereo_decimate parameter is True, the resolution of the two cameras will be
halved so that the resulting image has the same dimensions as if stereoscopic mode were not being used.

The led_pin parameter can be used to specify the GPIO pin which should be used to control the camera’s
LED via the led (page 116) attribute. If this is not specified, it should default to the correct value for your
Pi platform. You should only need to specify this parameter if you are using a custom DeviceTree blob (this

95

Picamera 1.13 Documentation, Release 1.13

is only typical on the Compute Module117 platform).

No preview or recording is started automatically upon construction. Use the capture() (page 97)
method to capture images, the start_recording() (page 103) method to begin recording video, or
the start_preview() (page 103) method to start live display of the camera’s input.

Several attributes are provided to adjust the camera’s configuration. Some of these can be adjusted while a
recording is running, like brightness (page 107). Others, like resolution (page 117), can only be
adjusted when the camera is idle.

When you are finished with the camera, you should ensure you call the close() (page 101) method to
release the camera resources:

camera = PiCamera()
try:

do something with the camera
pass

finally:
camera.close()

The class supports the context manager protocol to make this particularly easy (upon exiting the with118

statement, the close() (page 101) method is automatically called):

with PiCamera() as camera:
do something with the camera
pass

Changed in version 1.8: Added stereo_mode and stereo_decimate parameters.

Changed in version 1.9: Added resolution, framerate, and sensor_mode parameters.

Changed in version 1.10: Added led_pin parameter.

Changed in version 1.11: Added clock_mode parameter, and permitted setting of resolution as appropriately
formatted string.

Changed in version 1.13: Added framerate_range parameter.

add_overlay(source, size=None, format=None, **options)
Adds a static overlay to the preview output.

This method creates a new static overlay using the same rendering mechanism as the preview. Overlays
will appear on the Pi’s video output, but will not appear in captures or video recordings. Multiple
overlays can exist; each call to add_overlay() (page 96) returns a new PiOverlayRenderer
(page 133) instance representing the overlay.

The source must be an object that supports the buffer protocol119 in one of the supported unencoded
formats: 'yuv', 'rgb', 'rgba', 'bgr', or 'bgra'. The format can specified explicitly with the
optional format parameter. If not specified, the method will attempt to guess the format based on the
length of source and the size (assuming 3 bytes per pixel for RGB, and 4 bytes for RGBA).

The optional size parameter specifies the size of the source image as a (width, height) tuple. If
this is omitted or None then the size is assumed to be the same as the camera’s current resolution
(page 117).

The length of source must take into account that widths are rounded up to the nearest multiple of
32, and heights to the nearest multiple of 16. For example, if size is (1280, 720), and format is
'rgb', then source must be a buffer with length 1280 × 720 × 3 bytes, or 2,764,800 bytes (because
1280 is a multiple of 32, and 720 is a multiple of 16 no extra rounding is required). However, if size
is (97, 57), and format is 'rgb' then source must be a buffer with length 128 × 64 × 3 bytes, or
24,576 bytes (pixels beyond column 97 and row 57 in the source will be ignored).

117 https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-camera.md
118 https://docs.python.org/3.4/reference/compound_stmts.html#with
119 https://docs.python.org/3.4/c-api/buffer.html#bufferobjects

96 Chapter 9. API - The PiCamera Class

https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-camera.md
https://docs.python.org/3.4/reference/compound_stmts.html#with
https://docs.python.org/3.4/c-api/buffer.html#bufferobjects

Picamera 1.13 Documentation, Release 1.13

New overlays default to layer 0, whilst the preview defaults to layer 2. Higher numbered layers obscure
lower numbered layers, hence new overlays will be invisible (if the preview is running) by default. You
can make the new overlay visible either by making any existing preview transparent (with the alpha
(page 131) property) or by moving the overlay into a layer higher than the preview (with the layer
(page 132) property).

All keyword arguments captured in options are passed onto the PiRenderer (page 131) constructor.
All camera properties except resolution (page 117) and framerate (page 111) can be modified
while overlays exist. The reason for these exceptions is that the overlay has a static resolution and
changing the camera’s mode would require resizing of the source.

Warning: If too many overlays are added, the display output will be disabled and a reboot will
generally be required to restore the display. Overlays are composited “on the fly”. Hence, a real-
time constraint exists wherein for each horizontal line of HDMI output, the content of all source
layers must be fetched, resized, converted, and blended to produce the output pixels.

If enough overlays exist (where “enough” is a number dependent on overlay size, display resolu-
tion, bus frequency, and several other factors making it unrealistic to calculate in advance), this
process breaks down and video output fails. One solution is to add dispmanx_offline=1 to
/boot/config.txt to force the use of an off-screen buffer. Be aware that this requires more
GPU memory and may reduce the update rate.

New in version 1.8.

Changed in version 1.13: Added format parameter

capture(output, format=None, use_video_port=False, resize=None, splitter_port=0,
bayer=False, **options)

Capture an image from the camera, storing it in output.

If output is a string, it will be treated as a filename for a new file which the image will be written to. If
output is not a string, but is an object with a write method, it is assumed to be a file-like object and
the image data is appended to it (the implementation only assumes the object has a write method -
no other methods are required but flush will be called at the end of capture if it is present). If output
is not a string, and has no write method it is assumed to be a writeable object implementing the
buffer protocol. In this case, the image data will be written directly to the underlying buffer (which
must be large enough to accept the image data).

If format is None (the default), the method will attempt to guess the required image format from the
extension of output (if it’s a string), or from the name attribute of output (if it has one). In the case that
the format cannot be determined, a PiCameraValueError (page 144) will be raised.

If format is not None, it must be a string specifying the format that you want the image output in. The
format can be a MIME-type or one of the following strings:

• 'jpeg' - Write a JPEG file

• 'png' - Write a PNG file

• 'gif' - Write a GIF file

• 'bmp' - Write a Windows bitmap file

• 'yuv' - Write the raw image data to a file in YUV420 format

• 'rgb' - Write the raw image data to a file in 24-bit RGB format

• 'rgba' - Write the raw image data to a file in 32-bit RGBA format

• 'bgr' - Write the raw image data to a file in 24-bit BGR format

• 'bgra' - Write the raw image data to a file in 32-bit BGRA format

• 'raw' - Deprecated option for raw captures; the format is taken from the deprecated
raw_format (page 117) attribute

9.1. PiCamera 97

Picamera 1.13 Documentation, Release 1.13

The use_video_port parameter controls whether the camera’s image or video port is used to capture
images. It defaults to False which means that the camera’s image port is used. This port is slow but
produces better quality pictures. If you need rapid capture up to the rate of video frames, set this to
True.

When use_video_port is True, the splitter_port parameter specifies the port of the video splitter that
the image encoder will be attached to. This defaults to 0 and most users will have no need to specify
anything different. This parameter is ignored when use_video_port is False. See MMAL (page 79)
for more information about the video splitter.

If resize is not None (the default), it must be a two-element tuple specifying the width and height that
the image should be resized to.

Warning: If resize is specified, or use_video_port is True, Exif metadata will not be included
in JPEG output. This is due to an underlying firmware limitation.

Certain file formats accept additional options which can be specified as keyword arguments. Currently,
only the 'jpeg' encoder accepts additional options, which are:

• quality - Defines the quality of the JPEG encoder as an integer ranging from 1 to 100. Defaults to
85. Please note that JPEG quality is not a percentage and definitions of quality120 vary widely.

• restart - Defines the restart interval for the JPEG encoder as a number of JPEG MCUs. The actual
restart interval used will be a multiple of the number of MCUs per row in the resulting image.

• thumbnail - Defines the size and quality of the thumbnail to embed in the Exif metadata. Speci-
fying None disables thumbnail generation. Otherwise, specify a tuple of (width, height,
quality). Defaults to (64, 48, 35).

• bayer - If True, the raw bayer data from the camera’s sensor is included in the Exif metadata.

Note: The so-called “raw” formats listed above ('yuv', 'rgb', etc.) do not represent the raw bayer
data from the camera’s sensor. Rather they provide access to the image data after GPU processing, but
before format encoding (JPEG, PNG, etc). Currently, the only method of accessing the raw bayer data
is via the bayer parameter described above.

Changed in version 1.0: The resize parameter was added, and raw capture formats can now be specified
directly

Changed in version 1.3: The splitter_port parameter was added, and bayer was added as an option for
the 'jpeg' format

Changed in version 1.11: Support for buffer outputs was added.

capture_continuous(output, format=None, use_video_port=False, resize=None, split-
ter_port=0, burst=False, bayer=False, **options)

Capture images continuously from the camera as an infinite iterator.

This method returns an infinite iterator of images captured continuously from the camera. If output is
a string, each captured image is stored in a file named after output after substitution of two values with
the format()121 method. Those two values are:

• {counter} - a simple incrementor that starts at 1 and increases by 1 for each image taken

• {timestamp} - a datetime122 instance

The table below contains several example values of output and the sequence of filenames those values
could produce:

120 http://photo.net/learn/jpeg/#qual
121 https://docs.python.org/3.4/library/stdtypes.html#str.format
122 https://docs.python.org/3.4/library/datetime.html#datetime.datetime

98 Chapter 9. API - The PiCamera Class

http://photo.net/learn/jpeg/#qual
https://docs.python.org/3.4/library/stdtypes.html#str.format
https://docs.python.org/3.4/library/datetime.html#datetime.datetime

Picamera 1.13 Documentation, Release 1.13

output Value Filenames Notes
'image{counter}.jpg' image1.jpg, image2.jpg, im-

age3.jpg, . . .
'image{counter:02d}.jpg' image01.jpg, image02.jpg,

image03.jpg, . . .
'image{timestamp}.jpg' image2013-10-05

12:07:12.346743.jpg,
image2013-10-05
12:07:32.498539, . . .

(1)

'image{timestamp:%H-%M-%S-%f}.jpg' image12-10-02-561527.jpg,
image12-10-14-905398.jpg

'{timestamp:%H%M%S}-{counter:03d}.
jpg'

121002-001.jpg, 121013-
002.jpg, 121014-003.jpg,
. . .

(2)

1. Note that because timestamp’s default output includes colons (:), the resulting filenames are not
suitable for use on Windows. For this reason (and the fact the default contains spaces) it is strongly
recommended you always specify a format when using {timestamp}.

2. You can use both {timestamp} and {counter} in a single format string (multiple times too!)
although this tends to be redundant.

If output is not a string, but has a write method, it is assumed to be a file-like object and each image
is simply written to this object sequentially. In this case you will likely either want to write something
to the object between the images to distinguish them, or clear the object between iterations. If output
is not a string, and has no write method, it is assumed to be a writeable object supporting the buffer
protocol; each image is simply written to the buffer sequentially.

The format, use_video_port, splitter_port, resize, and options parameters are the same as in
capture() (page 97).

If use_video_port is False (the default), the burst parameter can be used to make still port captures
faster. Specifically, this prevents the preview from switching resolutions between captures which
significantly speeds up consecutive captures from the still port. The downside is that this mode is
currently has several bugs; the major issue is that if captures are performed too quickly some frames
will come back severely underexposed. It is recommended that users avoid the burst parameter unless
they absolutely require it and are prepared to work around such issues.

For example, to capture 60 images with a one second delay between them, writing the output to a
series of JPEG files named image01.jpg, image02.jpg, etc. one could do the following:

import time
import picamera
with picamera.PiCamera() as camera:

camera.start_preview()
try:

for i, filename in enumerate(
camera.capture_continuous('image{counter:02d}.jpg')):

print(filename)
time.sleep(1)
if i == 59:

break
finally:

camera.stop_preview()

Alternatively, to capture JPEG frames as fast as possible into an in-memory stream, performing some
processing on each stream until some condition is satisfied:

import io
import time

(continues on next page)

9.1. PiCamera 99

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

import picamera
with picamera.PiCamera() as camera:

stream = io.BytesIO()
for foo in camera.capture_continuous(stream, format='jpeg'):

Truncate the stream to the current position (in case
prior iterations output a longer image)
stream.truncate()
stream.seek(0)
if process(stream):

break

Changed in version 1.0: The resize parameter was added, and raw capture formats can now be specified
directly

Changed in version 1.3: The splitter_port parameter was added

Changed in version 1.11: Support for buffer outputs was added.

capture_sequence(outputs, format=’jpeg’, use_video_port=False, resize=None, split-
ter_port=0, burst=False, bayer=False, **options)

Capture a sequence of consecutive images from the camera.

This method accepts a sequence or iterator of outputs each of which must either be a string specifying
a filename for output, or a file-like object with a write method, or a writeable buffer object. For each
item in the sequence or iterator of outputs, the camera captures a single image as fast as it can.

The format, use_video_port, splitter_port, resize, and options parameters are the same as in
capture() (page 97), but format defaults to 'jpeg'. The format is not derived from the file-
names in outputs by this method.

If use_video_port is False (the default), the burst parameter can be used to make still port captures
faster. Specifically, this prevents the preview from switching resolutions between captures which
significantly speeds up consecutive captures from the still port. The downside is that this mode is
currently has several bugs; the major issue is that if captures are performed too quickly some frames
will come back severely underexposed. It is recommended that users avoid the burst parameter unless
they absolutely require it and are prepared to work around such issues.

For example, to capture 3 consecutive images:

import time
import picamera
with picamera.PiCamera() as camera:

camera.start_preview()
time.sleep(2)
camera.capture_sequence([

'image1.jpg',
'image2.jpg',
'image3.jpg',
])

camera.stop_preview()

If you wish to capture a large number of images, a list comprehension or generator expression can be
used to construct the list of filenames to use:

import time
import picamera
with picamera.PiCamera() as camera:

camera.start_preview()
time.sleep(2)
camera.capture_sequence([

'image%02d.jpg' % i
for i in range(100)

(continues on next page)

100 Chapter 9. API - The PiCamera Class

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

])
camera.stop_preview()

More complex effects can be obtained by using a generator function to provide the filenames or output
objects.

Changed in version 1.0: The resize parameter was added, and raw capture formats can now be specified
directly

Changed in version 1.3: The splitter_port parameter was added

Changed in version 1.11: Support for buffer outputs was added.

close()
Finalizes the state of the camera.

After successfully constructing a PiCamera (page 95) object, you should ensure you call the
close() (page 101) method once you are finished with the camera (e.g. in the finally sec-
tion of a try..finally block). This method stops all recording and preview activities and releases
all resources associated with the camera; this is necessary to prevent GPU memory leaks.

record_sequence(outputs, format=’h264’, resize=None, splitter_port=1, **options)
Record a sequence of video clips from the camera.

This method accepts a sequence or iterator of outputs each of which must either be a string specifying
a filename for output, or a file-like object with a write method.

The method acts as an iterator itself, yielding each item of the sequence in turn. In this way, the caller
can control how long to record to each item by only permitting the loop to continue when ready to
switch to the next output.

The format, splitter_port, resize, and options parameters are the same as in start_recording()
(page 103), but format defaults to 'h264'. The format is not derived from the filenames in outputs
by this method.

For example, to record 3 consecutive 10-second video clips, writing the output to a series of H.264
files named clip01.h264, clip02.h264, and clip03.h264 one could use the following:

import picamera
with picamera.PiCamera() as camera:

for filename in camera.record_sequence([
'clip01.h264',
'clip02.h264',
'clip03.h264']):

print('Recording to %s' % filename)
camera.wait_recording(10)

Alternatively, a more flexible method of writing the previous example (which is easier to expand to a
large number of output files) is by using a generator expression as the input sequence:

import picamera
with picamera.PiCamera() as camera:

for filename in camera.record_sequence(
'clip%02d.h264' % i for i in range(3)):

print('Recording to %s' % filename)
camera.wait_recording(10)

More advanced techniques are also possible by utilising infinite sequences, such as those generated by
itertools.cycle()123. In the following example, recording is switched between two in-memory
streams. Whilst one stream is recording, the other is being analysed. The script only stops recording
when a video recording meets some criteria defined by the process function:

123 https://docs.python.org/3.4/library/itertools.html#itertools.cycle

9.1. PiCamera 101

https://docs.python.org/3.4/library/itertools.html#itertools.cycle

Picamera 1.13 Documentation, Release 1.13

import io
import itertools
import picamera
with picamera.PiCamera() as camera:

analyse = None
for stream in camera.record_sequence(

itertools.cycle((io.BytesIO(), io.BytesIO()))):
if analyse is not None:

if process(analyse):
break

analyse.seek(0)
analyse.truncate()

camera.wait_recording(5)
analyse = stream

New in version 1.3.

remove_overlay(overlay)
Removes a static overlay from the preview output.

This method removes an overlay which was previously created by add_overlay() (page 96).
The overlay parameter specifies the PiRenderer (page 131) instance that was returned by
add_overlay() (page 96).

New in version 1.8.

request_key_frame(splitter_port=1)
Request the encoder generate a key-frame as soon as possible.

When called, the video encoder running on the specified splitter_port will attempt to produce a key-
frame (full-image frame) as soon as possible. The splitter_port defaults to 1. Valid values are between
0 and 3 inclusive.

Note: This method is only meaningful for recordings encoded in the H264 format as MJPEG produces
full frames for every frame recorded. Furthermore, there’s no guarantee that the next frame will be a
key-frame; this is simply a request to produce one as soon as possible after the call.

New in version 1.11.

split_recording(output, splitter_port=1, **options)
Continue the recording in the specified output; close existing output.

When called, the video encoder will wait for the next appropriate split point (an inline SPS header),
then will cease writing to the current output (and close it, if it was specified as a filename), and continue
writing to the newly specified output.

The output parameter is treated as in the start_recording() (page 103) method (it can be a
string, a file-like object, or a writeable buffer object).

The motion_output parameter can be used to redirect the output of the motion vector data in the
same fashion as output. If motion_output is None (the default) then motion vector data will not be
redirected and will continue being written to the output specified by the motion_output parameter given
to start_recording() (page 103). Alternatively, if you only wish to redirect motion vector data,
you can set output to None and given a new value for motion_output.

The splitter_port parameter specifies which port of the video splitter the encoder you wish to change
outputs is attached to. This defaults to 1 and most users will have no need to specify anything different.
Valid values are between 0 and 3 inclusive.

Note that unlike start_recording() (page 103), you cannot specify format or other options as
these cannot be changed in the middle of recording. Only the new output (and motion_output) can be
specified. Furthermore, the format of the recording is currently limited to H264, and inline_headers
must be True when start_recording() (page 103) is called (this is the default).

102 Chapter 9. API - The PiCamera Class

Picamera 1.13 Documentation, Release 1.13

Changed in version 1.3: The splitter_port parameter was added

Changed in version 1.5: The motion_output parameter was added

Changed in version 1.11: Support for buffer outputs was added.

start_preview(**options)
Displays the preview overlay.

This method starts a camera preview as an overlay on the Pi’s primary display (HDMI or composite).
A PiRenderer (page 131) instance (more specifically, a PiPreviewRenderer (page 134)) is
constructed with the keyword arguments captured in options, and is returned from the method (this
instance is also accessible from the preview (page 117) attribute for as long as the renderer remains
active). By default, the renderer will be opaque and fullscreen.

This means the default preview overrides whatever is currently visible on the display. More specifi-
cally, the preview does not rely on a graphical environment like X-Windows (it can run quite happily
from a TTY console); it is simply an overlay on the Pi’s video output. To stop the preview and re-
veal the display again, call stop_preview() (page 104). The preview can be started and stopped
multiple times during the lifetime of the PiCamera (page 95) object.

All other camera properties can be modified “live” while the preview is running (e.g. brightness
(page 107)).

Note: Because the default preview typically obscures the screen, ensure you have a means of stopping
a preview before starting one. If the preview obscures your interactive console you won’t be able to
Alt+Tab back to it as the preview isn’t in a window. If you are in an interactive Python session, simply
pressing Ctrl+D usually suffices to terminate the environment, including the camera and its associated
preview.

start_recording(output, format=None, resize=None, splitter_port=1, **options)
Start recording video from the camera, storing it in output.

If output is a string, it will be treated as a filename for a new file which the video will be written to. If
output is not a string, but is an object with a write method, it is assumed to be a file-like object and
the video data is appended to it (the implementation only assumes the object has a write() method
- no other methods are required but flush will be called at the end of recording if it is present). If
output is not a string, and has no write method it is assumed to be a writeable object implementing
the buffer protocol. In this case, the video frames will be written sequentially to the underlying buffer
(which must be large enough to accept all frame data).

If format is None (the default), the method will attempt to guess the required video format from the
extension of output (if it’s a string), or from the name attribute of output (if it has one). In the case that
the format cannot be determined, a PiCameraValueError (page 144) will be raised.

If format is not None, it must be a string specifying the format that you want the video output in. The
format can be a MIME-type or one of the following strings:

• 'h264' - Write an H.264 video stream

• 'mjpeg' - Write an M-JPEG video stream

• 'yuv' - Write the raw video data to a file in YUV420 format

• 'rgb' - Write the raw video data to a file in 24-bit RGB format

• 'rgba' - Write the raw video data to a file in 32-bit RGBA format

• 'bgr' - Write the raw video data to a file in 24-bit BGR format

• 'bgra' - Write the raw video data to a file in 32-bit BGRA format

If resize is not None (the default), it must be a two-element tuple specifying the width and height that
the video recording should be resized to. This is particularly useful for recording video using the full
resolution of the camera sensor (which is not possible in H.264 without down-sizing the output).

9.1. PiCamera 103

Picamera 1.13 Documentation, Release 1.13

The splitter_port parameter specifies the port of the built-in splitter that the video encoder will be
attached to. This defaults to 1 and most users will have no need to specify anything different. If you
wish to record multiple (presumably resized) streams simultaneously, specify a value between 0 and
3 inclusive for this parameter, ensuring that you do not specify a port that is currently in use.

Certain formats accept additional options which can be specified as keyword arguments. The 'h264'
format accepts the following additional options:

• profile - The H.264 profile to use for encoding. Defaults to ‘high’, but can be one of ‘baseline’,
‘main’, ‘extended’, ‘high’, or ‘constrained’.

• level - The H.264 level124 to use for encoding. Defaults to ‘4’, but can be any H.264 level up to
‘4.2’.

• intra_period - The key frame rate (the rate at which I-frames are inserted in the output). Defaults
to None, but can be any 32-bit integer value representing the number of frames between succes-
sive I-frames. The special value 0 causes the encoder to produce a single initial I-frame, and then
only P-frames subsequently. Note that split_recording() (page 102) will fail in this mode.

• intra_refresh - The key frame format (the way in which I-frames will be inserted into the output
stream). Defaults to None, but can be one of ‘cyclic’, ‘adaptive’, ‘both’, or ‘cyclicrows’.

• inline_headers - When True, specifies that the encoder should output SPS/PPS headers within
the stream to ensure GOPs (groups of pictures) are self describing. This is important for stream-
ing applications where the client may wish to seek within the stream, and enables the use of
split_recording() (page 102). Defaults to True if not specified.

• sei - When True, specifies the encoder should include “Supplemental Enhancement Information”
within the output stream. Defaults to False if not specified.

• sps_timing - When True the encoder includes the camera’s framerate in the SPS header. Defaults
to False if not specified.

• motion_output - Indicates the output destination for motion vector estimation data. When None
(the default), motion data is not output. Otherwise, this can be a filename string, a file-like object,
or a writeable buffer object (as with the output parameter).

All encoded formats accept the following additional options:

• bitrate - The bitrate at which video will be encoded. Defaults to 17000000 (17Mbps) if not
specified. The maximum value depends on the selected H.264 level125 and profile. Bitrate 0
indicates the encoder should not use bitrate control (the encoder is limited by the quality only).

• quality - Specifies the quality that the encoder should attempt to maintain. For the 'h264'
format, use values between 10 and 40 where 10 is extremely high quality, and 40 is extremely
low (20-25 is usually a reasonable range for H.264 encoding). For the mjpeg format, use JPEG
quality values between 1 and 100 (where higher values are higher quality). Quality 0 is special
and seems to be a “reasonable quality” default.

• quantization - Deprecated alias for quality.

Changed in version 1.0: The resize parameter was added, and 'mjpeg' was added as a recording
format

Changed in version 1.3: The splitter_port parameter was added

Changed in version 1.5: The quantization parameter was deprecated in favor of quality, and the mo-
tion_output parameter was added.

Changed in version 1.11: Support for buffer outputs was added.

stop_preview()
Hides the preview overlay.

124 https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC#Levels
125 https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC#Levels

104 Chapter 9. API - The PiCamera Class

https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC#Levels
https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC#Levels

Picamera 1.13 Documentation, Release 1.13

If start_preview() (page 103) has previously been called, this method shuts down the preview
display which generally results in the underlying display becoming visible again. If a preview is not
currently running, no exception is raised - the method will simply do nothing.

stop_recording(splitter_port=1)
Stop recording video from the camera.

After calling this method the video encoder will be shut down and output will stop being written to
the file-like object specified with start_recording() (page 103). If an error occurred during
recording and wait_recording() (page 105) has not been called since the error then this method
will raise the exception.

The splitter_port parameter specifies which port of the video splitter the encoder you wish to stop is
attached to. This defaults to 1 and most users will have no need to specify anything different. Valid
values are between 0 and 3 inclusive.

Changed in version 1.3: The splitter_port parameter was added

wait_recording(timeout=0, splitter_port=1)
Wait on the video encoder for timeout seconds.

It is recommended that this method is called while recording to check for exceptions. If an error occurs
during recording (for example out of disk space) the recording will stop, but an exception will only be
raised when the wait_recording() (page 105) or stop_recording() (page 105) methods
are called.

If timeout is 0 (the default) the function will immediately return (or raise an exception if an error
has occurred).

The splitter_port parameter specifies which port of the video splitter the encoder you wish to wait on
is attached to. This defaults to 1 and most users will have no need to specify anything different. Valid
values are between 0 and 3 inclusive.

Changed in version 1.3: The splitter_port parameter was added

ISO
Retrieves or sets the apparent ISO setting of the camera.

Deprecated since version 1.8: Please use the iso (page 115) attribute instead.

analog_gain
Retrieves the current analog gain of the camera.

When queried, this property returns the analog gain currently being used by the camera. The value
represents the analog gain of the sensor prior to digital conversion. The value is returned as a
Fraction126 instance.

New in version 1.6.

annotate_background
Controls what background is drawn behind the annotation.

The annotate_background (page 105) attribute specifies if a background will be drawn behind
the annotation text (page 106) and, if so, what color it will be. The value is specified as a
Color (page 147) or None if no background should be drawn. The default is None.

Note: For backward compatibility purposes, the value False will be treated as None, and the value
True will be treated as the color black. The “truthiness” of the values returned by the attribute are
backward compatible although the values themselves are not.

New in version 1.8.

Changed in version 1.10: In prior versions this was a bool value with True representing a black
background.

126 https://docs.python.org/3.4/library/fractions.html#fractions.Fraction

9.1. PiCamera 105

https://docs.python.org/3.4/library/fractions.html#fractions.Fraction

Picamera 1.13 Documentation, Release 1.13

annotate_foreground
Controls the color of the annotation text.

The annotate_foreground (page 105) attribute specifies, partially, the color of the annotation
text. The value is specified as a Color (page 147). The default is white.

Note: The underlying firmware does not directly support setting all components of the text color, only
the Y’ component of a Y’UV127 tuple. This is roughly (but not precisely) analogous to the “brightness”
of a color, so you may choose to think of this as setting how bright the annotation text will be relative
to its background. In order to specify just the Y’ component when setting this attribute, you may
choose to construct the Color (page 147) instance as follows:

camera.annotate_foreground = picamera.Color(y=0.2, u=0, v=0)

New in version 1.10.

annotate_frame_num
Controls whether the current frame number is drawn as an annotation.

The annotate_frame_num (page 106) attribute is a bool indicating whether or not the current
frame number is rendered as an annotation, similar to annotate_text (page 106). The default is
False.

New in version 1.8.

annotate_text
Retrieves or sets a text annotation for all output.

When queried, the annotate_text (page 106) property returns the current annotation (if no anno-
tation has been set, this is simply a blank string).

When set, the property immediately applies the annotation to the preview (if it is running) and to any
future captures or video recording. Strings longer than 255 characters, or strings containing non-ASCII
characters will raise a PiCameraValueError (page 144). The default value is ''.

Changed in version 1.8: Text annotations can now be 255 characters long. The prior limit was 32
characters.

annotate_text_size
Controls the size of the annotation text.

The annotate_text_size (page 106) attribute is an int which determines how large the annota-
tion text will appear on the display. Valid values are in the range 6 to 160, inclusive. The default is
32.

New in version 1.10.

awb_gains
Gets or sets the auto-white-balance gains of the camera.

When queried, this attribute returns a tuple of values representing the (red, blue) balance of the camera.
The red and blue values are returned Fraction128 instances. The values will be between 0.0 and
8.0.

When set, this attribute adjusts the camera’s auto-white-balance gains. The property can be specified
as a single value in which case both red and blue gains will be adjusted equally, or as a (red, blue)
tuple. Values can be specified as an int129, float130 or Fraction131 and each gain must be between
0.0 and 8.0. Typical values for the gains are between 0.9 and 1.9. The property can be set while
recordings or previews are in progress.

127 https://en.wikipedia.org/wiki/YUV
128 https://docs.python.org/3.4/library/fractions.html#fractions.Fraction
129 https://docs.python.org/3.4/library/stdtypes.html#typesnumeric
130 https://docs.python.org/3.4/library/stdtypes.html#typesnumeric
131 https://docs.python.org/3.4/library/fractions.html#fractions.Fraction

106 Chapter 9. API - The PiCamera Class

https://en.wikipedia.org/wiki/YUV
https://docs.python.org/3.4/library/fractions.html#fractions.Fraction
https://docs.python.org/3.4/library/stdtypes.html#typesnumeric
https://docs.python.org/3.4/library/stdtypes.html#typesnumeric
https://docs.python.org/3.4/library/fractions.html#fractions.Fraction

Picamera 1.13 Documentation, Release 1.13

Note: This attribute only has an effect when awb_mode (page 107) is set to 'off'. Also
note that even with AWB disabled, some attributes (specifically still_stats (page 119) and
drc_strength (page 108)) can cause AWB re-calculations.

Changed in version 1.6: Prior to version 1.6, this attribute was write-only.

awb_mode
Retrieves or sets the auto-white-balance mode of the camera.

When queried, the awb_mode (page 107) property returns a string representing the auto white bal-
ance setting of the camera. The possible values can be obtained from the PiCamera.AWB_MODES
attribute, and are as follows:

• 'off'

• 'auto'

• 'sunlight'

• 'cloudy'

• 'shade'

• 'tungsten'

• 'fluorescent'

• 'incandescent'

• 'flash'

• 'horizon'

When set, the property adjusts the camera’s auto-white-balance mode. The property can be set while
recordings or previews are in progress. The default value is 'auto'.

Note: AWB mode 'off' is special: this disables the camera’s automatic white balance permit-
ting manual control of the white balance via the awb_gains (page 106) property. However, even
with AWB disabled, some attributes (specifically still_stats (page 119) and drc_strength
(page 108)) can cause AWB re-calculations.

brightness
Retrieves or sets the brightness setting of the camera.

When queried, the brightness (page 107) property returns the brightness level of the camera as an
integer between 0 and 100. When set, the property adjusts the brightness of the camera. Brightness
can be adjusted while previews or recordings are in progress. The default value is 50.

clock_mode
Retrieves or sets the mode of the camera’s clock.

This is an advanced property which can be used to control the nature of the frame timestamps available
from the frame (page 111) property. When this is “reset” (the default) each frame’s timestamp will
be relative to the start of the recording. When this is “raw”, each frame’s timestamp will be relative to
the last initialization of the camera.

The initial value of this property can be specified with the clock_mode parameter in the PiCamera
(page 95) constructor, and will default to “reset” if not specified.

New in version 1.11.

closed
Returns True if the close() (page 101) method has been called.

9.1. PiCamera 107

Picamera 1.13 Documentation, Release 1.13

color_effects
Retrieves or sets the current color effect applied by the camera.

When queried, the color_effects (page 107) property either returns None which indicates that
the camera is using normal color settings, or a (u, v) tuple where u and v are integer values between
0 and 255.

When set, the property changes the color effect applied by the camera. The property can be set while
recordings or previews are in progress. For example, to make the image black and white set the value
to (128, 128). The default value is None.

contrast
Retrieves or sets the contrast setting of the camera.

When queried, the contrast (page 108) property returns the contrast level of the camera as an
integer between -100 and 100. When set, the property adjusts the contrast of the camera. Contrast can
be adjusted while previews or recordings are in progress. The default value is 0.

crop
Retrieves or sets the zoom applied to the camera’s input.

Deprecated since version 1.8: Please use the zoom (page 120) attribute instead.

digital_gain
Retrieves the current digital gain of the camera.

When queried, this property returns the digital gain currently being used by the camera. The value
represents the digital gain the camera applies after conversion of the sensor’s analog output. The value
is returned as a Fraction132 instance.

New in version 1.6.

drc_strength
Retrieves or sets the dynamic range compression strength of the camera.

When queried, the drc_strength (page 108) property returns a string indicating the amount of
dynamic range compression133 the camera applies to images.

When set, the attributes adjusts the strength of the dynamic range compression applied to the camera’s
output. Valid values are given in the list below:

• 'off'

• 'low'

• 'medium'

• 'high'

The default value is 'off'. All possible values for the attribute can be obtained from the
PiCamera.DRC_STRENGTHS attribute.

Warning: Enabling DRC will override fixed white balance134 gains (set via awb_gains
(page 106) and awb_mode (page 107)).

New in version 1.6.

exif_tags
Holds a mapping of the Exif tags to apply to captured images.

Note: Please note that Exif tagging is only supported with the jpeg format.

132 https://docs.python.org/3.4/library/fractions.html#fractions.Fraction
133 https://en.wikipedia.org/wiki/Gain_compression
134 https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772

108 Chapter 9. API - The PiCamera Class

https://docs.python.org/3.4/library/fractions.html#fractions.Fraction
https://en.wikipedia.org/wiki/Gain_compression
https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772

Picamera 1.13 Documentation, Release 1.13

By default several Exif tags are automatically applied to any images taken with the capture()
(page 97) method: IFD0.Make (which is set to RaspberryPi), IFD0.Model (which is set to
RP_OV5647), and three timestamp tags: IFD0.DateTime, EXIF.DateTimeOriginal, and
EXIF.DateTimeDigitized which are all set to the current date and time just before the picture
is taken.

If you wish to set additional Exif tags, or override any of the aforementioned tags, simply add entries
to the exif_tags map before calling capture() (page 97). For example:

camera.exif_tags['IFD0.Copyright'] = 'Copyright (c) 2013 Foo Industries'

The Exif standard mandates ASCII encoding for all textual values, hence strings containing non-ASCII
characters will cause an encoding error to be raised when capture() (page 97) is called. If you wish
to set binary values, use a bytes() value:

camera.exif_tags['EXIF.UserComment'] = b'Something containing\x00NULL
→˓characters'

Warning: Binary Exif values are currently ignored; this appears to be a libmmal or firmware bug.

You may also specify datetime values, integer, or float values, all of which will be converted to ap-
propriate ASCII strings (datetime values are formatted as YYYY:MM:DD HH:MM:SS in accordance
with the Exif standard).

The currently supported Exif tags are:

GroupTags
IFD0,
IFD1

ImageWidth, ImageLength, BitsPerSample, Compression, PhotometricInterpretation, Im-
ageDescription, Make, Model, StripOffsets, Orientation, SamplesPerPixel, RowsPerString,
StripByteCounts, Xresolution, Yresolution, PlanarConfiguration, ResolutionUnit, Trans-
ferFunction, Software, DateTime, Artist, WhitePoint, PrimaryChromaticities, JPEGInter-
changeFormat, JPEGInterchangeFormatLength, YcbCrCoefficients, YcbCrSubSampling,
YcbCrPositioning, ReferenceBlackWhite, Copyright

EXIF ExposureTime, FNumber, ExposureProgram, SpectralSensitivity, ISOSpeedRatings, OECF,
ExifVersion, DateTimeOriginal, DateTimeDigitized, ComponentsConfiguration, Com-
pressedBitsPerPixel, ShutterSpeedValue, ApertureValue, BrightnessValue, ExposureBi-
asValue, MaxApertureValue, SubjectDistance, MeteringMode, LightSource, Flash, Fo-
calLength, SubjectArea, MakerNote, UserComment, SubSecTime, SubSecTimeOriginal,
SubSecTimeDigitized, FlashpixVersion, ColorSpace, PixelXDimension, PixelYDimension,
RelatedSoundFile, FlashEnergy, SpacialFrequencyResponse, FocalPlaneXResolution, Fo-
calPlaneYResolution, FocalPlaneResolutionUnit, SubjectLocation, ExposureIndex, Sens-
ingMethod, FileSource, SceneType, CFAPattern, CustomRendered, ExposureMode, White-
Balance, DigitalZoomRatio, FocalLengthIn35mmFilm, SceneCaptureType, GainControl,
Contrast, Saturation, Sharpness, DeviceSettingDescription, SubjectDistanceRange, Image-
UniqueID

GPS GPSVersionID, GPSLatitudeRef, GPSLatitude, GPSLongitudeRef, GPSLongitude, GP-
SAltitudeRef, GPSAltitude, GPSTimeStamp, GPSSatellites, GPSStatus, GPSMeasure-
Mode, GPSDOP, GPSSpeedRef, GPSSpeed, GPSTrackRef, GPSTrack, GPSImgDirection-
Ref, GPSImgDirection, GPSMapDatum, GPSDestLatitudeRef, GPSDestLatitude, GPS-
DestLongitudeRef, GPSDestLongitude, GPSDestBearingRef, GPSDestBearing, GPSDest-
DistanceRef, GPSDestDistance, GPSProcessingMethod, GPSAreaInformation, GPSDateS-
tamp, GPSDifferential

EINT InteroperabilityIndex, InteroperabilityVersion, RelatedImageFileFormat, RelatedIm-
ageWidth, RelatedImageLength

exposure_compensation
Retrieves or sets the exposure compensation level of the camera.

9.1. PiCamera 109

Picamera 1.13 Documentation, Release 1.13

When queried, the exposure_compensation (page 109) property returns an integer value be-
tween -25 and 25 indicating the exposure level of the camera. Larger values result in brighter images.

When set, the property adjusts the camera’s exposure compensation level. Each increment represents
1/6th of a stop. Hence setting the attribute to 6 increases exposure by 1 stop. The property can be set
while recordings or previews are in progress. The default value is 0.

exposure_mode
Retrieves or sets the exposure mode of the camera.

When queried, the exposure_mode (page 110) property returns a string representing the exposure
setting of the camera. The possible values can be obtained from the PiCamera.EXPOSURE_MODES
attribute, and are as follows:

• 'off'

• 'auto'

• 'night'

• 'nightpreview'

• 'backlight'

• 'spotlight'

• 'sports'

• 'snow'

• 'beach'

• 'verylong'

• 'fixedfps'

• 'antishake'

• 'fireworks'

When set, the property adjusts the camera’s exposure mode. The property can be set while recordings
or previews are in progress. The default value is 'auto'.

Note: Exposure mode 'off' is special: this disables the camera’s automatic gain control, fixing the
values of digital_gain (page 108) and analog_gain (page 105).

Please note that these properties are not directly settable (although they can be influenced by setting
iso (page 115) prior to fixing the gains), and default to low values when the camera is first initialized.
Therefore it is important to let them settle on higher values before disabling automatic gain control
otherwise all frames captured will appear black.

exposure_speed
Retrieves the current shutter speed of the camera.

When queried, this property returns the shutter speed currently being used by the camera. If you
have set shutter_speed (page 119) to a non-zero value, then exposure_speed (page 110) and
shutter_speed (page 119) should be equal. However, if shutter_speed (page 119) is set to 0
(auto), then you can read the actual shutter speed being used from this attribute. The value is returned
as an integer representing a number of microseconds. This is a read-only property.

New in version 1.6.

flash_mode
Retrieves or sets the flash mode of the camera.

When queried, the flash_mode (page 110) property returns a string representing the flash setting of
the camera. The possible values can be obtained from the PiCamera.FLASH_MODES attribute, and
are as follows:

110 Chapter 9. API - The PiCamera Class

Picamera 1.13 Documentation, Release 1.13

• 'off'

• 'auto'

• 'on'

• 'redeye'

• 'fillin'

• 'torch'

When set, the property adjusts the camera’s flash mode. The property can be set while recordings or
previews are in progress. The default value is 'off'.

Note: You must define which GPIO pins the camera is to use for flash and privacy indicators. This
is done within the Device Tree configuration135 which is considered an advanced topic. Specifically,
you need to define pins FLASH_0_ENABLE and optionally FLASH_0_INDICATOR (for the privacy
indicator). More information can be found in this recipe (page 53).

New in version 1.10.

frame
Retrieves information about the current frame recorded from the camera.

When video recording is active (after a call to start_recording() (page 103)), this attribute will
return a PiVideoFrame (page 121) tuple containing information about the current frame that the
camera is recording.

If multiple video recordings are currently in progress (after multiple calls to start_recording()
(page 103) with different values for the splitter_port parameter), which encoder’s frame infor-
mation is returned is arbitrary. If you require information from a specific encoder, you will need to
extract it from _encoders explicitly.

Querying this property when the camera is not recording will result in an exception.

Note: There is a small window of time when querying this attribute will return None after calling
start_recording() (page 103). If this attribute returns None, this means that the video encoder
has been initialized, but the camera has not yet returned any frames.

framerate
Retrieves or sets the framerate at which video-port based image captures, video recordings, and pre-
views will run.

When queried, the framerate (page 111) property returns the rate at which the camera’s video and
preview ports will operate as a Fraction136 instance (which can be easily converted to an int137 or
float138). If framerate_range (page 113) has been set, then framerate (page 111) will be 0
which indicates that a dynamic range of framerates is being used.

Note: For backwards compatibility, a derivative of the Fraction139 class is actually used which
permits the value to be treated as a tuple of (numerator, denominator).

Setting and retrieving framerate as a (numerator, denominator) tuple is deprecated and will
be removed in 2.0. Please use a Fraction140 instance instead (which is just as accurate and also
permits direct use with math operators).

135 https://www.raspberrypi.org/documentation/configuration/pin-configuration.md
136 https://docs.python.org/3.4/library/fractions.html#fractions.Fraction
137 https://docs.python.org/3.4/library/functions.html#int
138 https://docs.python.org/3.4/library/functions.html#float
139 https://docs.python.org/3.4/library/fractions.html#fractions.Fraction
140 https://docs.python.org/3.4/library/fractions.html#fractions.Fraction

9.1. PiCamera 111

https://www.raspberrypi.org/documentation/configuration/pin-configuration.md
https://docs.python.org/3.4/library/fractions.html#fractions.Fraction
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/fractions.html#fractions.Fraction
https://docs.python.org/3.4/library/fractions.html#fractions.Fraction

Picamera 1.13 Documentation, Release 1.13

When set, the property configures the camera so that the next call to recording and previewing methods
will use the new framerate. Setting this property implicitly sets framerate_range (page 113) so
that the low and high values are equal to the new framerate. The framerate can be specified as an int141,
float142, Fraction143, or a (numerator, denominator) tuple. For example, the following
definitions are all equivalent:

from fractions import Fraction

camera.framerate = 30
camera.framerate = 30 / 1
camera.framerate = Fraction(30, 1)
camera.framerate = (30, 1) # deprecated

The camera must not be closed, and no recording must be active when the property is set.

Note: This attribute, in combination with resolution (page 117), determines the mode that the
camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but
not directly set, by this property. See sensor_mode (page 118) for more information.

The initial value of this property can be specified with the framerate parameter in the PiCamera
(page 95) constructor, and will default to 30 if not specified.

framerate_delta
Retrieves or sets a fractional amount that is added to the camera’s framerate for the purpose of minor
framerate adjustments.

When queried, the framerate_delta (page 112) property returns the amount that the camera’s
framerate (page 111) has been adjusted. This defaults to 0 (so the camera’s framerate is the actual
framerate used).

When set, the property adjusts the camera’s framerate on the fly. The property can be set while
recordings or previews are in progress. Thus the framerate used by the camera is actually framerate
(page 111) + framerate_delta (page 112).

Note: Framerates deltas can be fractional with adjustments as small as 1/256th of an fps possible
(finer adjustments will be rounded). With an appropriately tuned PID controller, this can be used to
achieve synchronization between the camera framerate and other devices.

If the new framerate demands a mode switch (such as moving between a low framerate and a high
framerate mode), currently active recordings may drop a frame. This should only happen when speci-
fying quite large deltas, or when framerate is at the boundary of a sensor mode (e.g. 49fps).

The framerate delta can be specified as an int144, float145, Fraction146 or a (numerator,
denominator) tuple. For example, the following definitions are all equivalent:

from fractions import Fraction

camera.framerate_delta = 0.5
camera.framerate_delta = 1 / 2 # in python 3
camera.framerate_delta = Fraction(1, 2)
camera.framerate_delta = (1, 2) # deprecated

Note: This property is implicitly reset to 0 when framerate (page 111) or framerate_range

141 https://docs.python.org/3.4/library/stdtypes.html#typesnumeric
142 https://docs.python.org/3.4/library/stdtypes.html#typesnumeric
143 https://docs.python.org/3.4/library/fractions.html#fractions.Fraction
144 https://docs.python.org/3.4/library/stdtypes.html#typesnumeric
145 https://docs.python.org/3.4/library/stdtypes.html#typesnumeric
146 https://docs.python.org/3.4/library/fractions.html#fractions.Fraction

112 Chapter 9. API - The PiCamera Class

https://docs.python.org/3.4/library/stdtypes.html#typesnumeric
https://docs.python.org/3.4/library/stdtypes.html#typesnumeric
https://docs.python.org/3.4/library/fractions.html#fractions.Fraction
https://docs.python.org/3.4/library/stdtypes.html#typesnumeric
https://docs.python.org/3.4/library/stdtypes.html#typesnumeric
https://docs.python.org/3.4/library/fractions.html#fractions.Fraction

Picamera 1.13 Documentation, Release 1.13

(page 113) is set. When framerate (page 111) is 0 (indicating that framerate_range
(page 113) is set), this property cannot be used. (there would be little point in making fractional
adjustments to the framerate when the framerate itself is variable).

New in version 1.11.

framerate_range
Retrieves or sets a range between which the camera’s framerate is allowed to float.

When queried, the framerate_range (page 113) property returns a namedtuple()147 deriva-
tive with low and high components (index 0 and 1 respectively) which specify the limits of the
permitted framerate range.

When set, the property configures the camera so that the next call to recording and previewing methods
will use the new framerate range. Setting this property will implicitly set the framerate (page 111)
property to 0 (indicating that a dynamic range of framerates is in use by the camera).

Note: Use of this property prevents use of framerate_delta (page 112) (there would be little
point in making fractional adjustments to the framerate when the framerate itself is variable).

The low and high framerates can be specified as int148, float149, or Fraction150 values. For example,
the following definitions are all equivalent:

from fractions import Fraction

camera.framerate_range = (0.16666, 30)
camera.framerate_range = (Fraction(1, 6), 30 / 1)
camera.framerate_range = (Fraction(1, 6), Fraction(30, 1))

The camera must not be closed, and no recording must be active when the property is set.

Note: This attribute, like framerate (page 111), determines the mode that the camera operates in.
The actual sensor framerate and resolution used by the camera is influenced, but not directly set, by
this property. See sensor_mode (page 118) for more information.

New in version 1.13.

hflip
Retrieves or sets whether the camera’s output is horizontally flipped.

When queried, the hflip (page 113) property returns a boolean indicating whether or not the cam-
era’s output is horizontally flipped. The property can be set while recordings or previews are in
progress. The default value is False.

image_denoise
Retrieves or sets whether denoise will be applied to image captures.

When queried, the image_denoise (page 113) property returns a boolean value indicating whether
or not the camera software will apply a denoise algorithm to image captures.

When set, the property activates or deactivates the denoise algorithm for image captures. The property
can be set while recordings or previews are in progress. The default value is True.

New in version 1.7.

image_effect
Retrieves or sets the current image effect applied by the camera.

147 https://docs.python.org/3.4/library/collections.html#collections.namedtuple
148 https://docs.python.org/3.4/library/stdtypes.html#typesnumeric
149 https://docs.python.org/3.4/library/stdtypes.html#typesnumeric
150 https://docs.python.org/3.4/library/fractions.html#fractions.Fraction

9.1. PiCamera 113

https://docs.python.org/3.4/library/collections.html#collections.namedtuple
https://docs.python.org/3.4/library/stdtypes.html#typesnumeric
https://docs.python.org/3.4/library/stdtypes.html#typesnumeric
https://docs.python.org/3.4/library/fractions.html#fractions.Fraction

Picamera 1.13 Documentation, Release 1.13

When queried, the image_effect (page 113) property returns a string representing the effect the
camera will apply to captured video. The possible values can be obtained from the PiCamera.
IMAGE_EFFECTS attribute, and are as follows:

• 'none'

• 'negative'

• 'solarize'

• 'sketch'

• 'denoise'

• 'emboss'

• 'oilpaint'

• 'hatch'

• 'gpen'

• 'pastel'

• 'watercolor'

• 'film'

• 'blur'

• 'saturation'

• 'colorswap'

• 'washedout'

• 'posterise'

• 'colorpoint'

• 'colorbalance'

• 'cartoon'

• 'deinterlace1'

• 'deinterlace2'

When set, the property changes the effect applied by the camera. The property can be set while
recordings or previews are in progress, but only certain effects work while recording video (notably
'negative' and 'solarize'). The default value is 'none'.

image_effect_params
Retrieves or sets the parameters for the current effect (page 113).

When queried, the image_effect_params (page 114) property either returns None (for effects
which have no configurable parameters, or if no parameters have been configured), or a tuple of nu-
meric values up to six elements long.

When set, the property changes the parameters of the current effect (page 113) as a se-
quence of numbers, or a single number. Attempting to set parameters on an effect which does
not support parameters, or providing an incompatible set of parameters for an effect will raise a
PiCameraValueError (page 144) exception.

The effects which have parameters, and what combinations those parameters can take is as follows:

114 Chapter 9. API - The PiCamera Class

Picamera 1.13 Documentation, Release 1.13

Effect Parameters Description
'solarize' yuv, x0, y1, y2, y3 yuv controls whether data is processed as RGB (0) or

YUV(1). Input values from 0 to x0 - 1 are remapped
linearly onto the range 0 to y0. Values from x0 to 255
are remapped linearly onto the range y1 to y2.

x0, y0, y1, y2 Same as above, but yuv defaults to 0 (process as
RGB).

yuv Same as above, but x0, y0, y1, y2 default to 128, 128,
128, 0 respectively.

'colorpoint' quadrant quadrant specifies which quadrant of the U/V space
to retain chroma from: 0=green, 1=red/yellow,
2=blue, 3=purple. There is no default; this effect does
nothing until parameters are set.

'colorbalance' lens, r, g, b, u, v lens specifies the lens shading strength (0.0 to 256.0,
where 0.0 indicates lens shading has no effect). r, g, b
are multipliers for their respective color channels (0.0
to 256.0). u and v are offsets added to the U/V plane
(0 to 255).

lens, r, g, b Same as above but u are defaulted to 0.
lens, r, b Same as above but g also defaults to to 1.0.

'colorswap' dir If dir is 0, swap RGB to BGR. If dir is 1, swap RGB
to BRG.

'posterise' steps Control the quantization steps for the image. Valid
values are 2 to 32, and the default is 4.

'blur' size Specifies the size of the kernel. Valid values are 1 or
2.

'film' strength, u, v strength specifies the strength of effect. u and v are
offsets added to the U/V plane (0 to 255).

'watercolor' u, v u and v specify offsets to add to the U/V plane (0 to
255).
No parameters indicates no U/V effect.

New in version 1.8.

iso
Retrieves or sets the apparent ISO setting of the camera.

When queried, the iso (page 115) property returns the ISO setting of the camera, a value which
represents the sensitivity of the camera to light151. Lower values (e.g. 100) imply less sensitivity than
higher values (e.g. 400 or 800). Lower sensitivities tend to produce less “noisy” (smoother) images,
but operate poorly in low light conditions.

When set, the property adjusts the sensitivity of the camera (by adjusting the analog_gain
(page 105) and digital_gain (page 108)). Valid values are between 0 (auto) and 1600. The
actual value used when iso is explicitly set will be one of the following values (whichever is closest):
100, 200, 320, 400, 500, 640, 800.

On the V1 camera module, non-zero ISO values attempt to fix overall gain at various levels. For
example, ISO 100 attempts to provide an overall gain of 1.0, ISO 200 attempts to provide overall gain
of 2.0, etc. The algorithm prefers analog gain over digital gain to reduce noise.

On the V2 camera module, ISO 100 attempts to produce overall gain of ~1.84, and ISO 800 attempts
to produce overall gain of ~14.72 (the V2 camera module was calibrated against the ISO film speed152

standard).

The attribute can be adjusted while previews or recordings are in progress. The default value is 0
which means automatically determine a value according to image-taking conditions.

151 https://en.wikipedia.org/wiki/Film_speed#Digital
152 https://en.wikipedia.org/wiki/Film_speed#Current_system:_ISO

9.1. PiCamera 115

https://en.wikipedia.org/wiki/Film_speed#Digital
https://en.wikipedia.org/wiki/Film_speed#Current_system:_ISO

Picamera 1.13 Documentation, Release 1.13

Note: Some users on the Pi camera forum have noted that higher ISO values than 800 (specifically up
to 1600) can be achieved in certain conditions with exposure_mode (page 110) set to 'sports'
and iso (page 115) set to 0. It doesn’t appear to be possible to manually request an ISO setting higher
than 800, but the picamera library will permit settings up to 1600 in case the underlying firmware
permits such settings in particular circumstances.

Note: Certain exposure_mode (page 110) values override the ISO setting. For example, 'off'
fixes analog_gain (page 105) and digital_gain (page 108) entirely, preventing this property
from adjusting them when set.

led
Sets the state of the camera’s LED via GPIO.

If a GPIO library is available (only RPi.GPIO is currently supported), and if the python process has
the necessary privileges (typically this means running as root via sudo), this property can be used to
set the state of the camera’s LED as a boolean value (True is on, False is off).

Note: This is a write-only property. While it can be used to control the camera’s LED, you cannot
query the state of the camera’s LED using this property.

Note: At present, the camera’s LED cannot be controlled on the Pi 3 (the GPIOs used to control the
camera LED were re-routed to GPIO expander on the Pi 3).

Warning: There are circumstances in which the camera firmware may override an existing LED
setting. For example, in the case that the firmware resets the camera (as can happen with a CSI-2
timeout), the LED may also be reset. If you wish to guarantee that the LED remain off at all times,
you may prefer to use the disable_camera_led option in config.txt153 (this has the added
advantage that sudo privileges and GPIO access are not required, at least for LED control).

meter_mode
Retrieves or sets the metering mode of the camera.

When queried, the meter_mode (page 116) property returns the method by which the camera deter-
mines the exposure154 as one of the following strings:

• 'average'

• 'spot'

• 'backlit'

• 'matrix'

When set, the property adjusts the camera’s metering mode. All modes set up two regions: a center
region, and an outer region. The major difference between each mode155 is the size of the center
region. The 'backlit' mode has the largest central region (30% of the width), while 'spot' has
the smallest (10% of the width).

The property can be set while recordings or previews are in progress. The default value is
'average'. All possible values for the attribute can be obtained from the PiCamera.
METER_MODES attribute.

153 https://www.raspberrypi.org/documentation/configuration/config-txt.md
154 https://en.wikipedia.org/wiki/Metering_mode
155 https://www.raspberrypi.org/forums/viewtopic.php?p=565644#p565644

116 Chapter 9. API - The PiCamera Class

https://www.raspberrypi.org/documentation/configuration/config-txt.md
https://en.wikipedia.org/wiki/Metering_mode
https://en.wikipedia.org/wiki/Metering_mode
https://www.raspberrypi.org/forums/viewtopic.php?p=565644#p565644

Picamera 1.13 Documentation, Release 1.13

overlays
Retrieves all active PiRenderer (page 131) overlays.

If no overlays are current active, overlays (page 116) will return an empty iterable. Otherwise, it
will return an iterable of PiRenderer (page 131) instances which are currently acting as overlays.
Note that the preview renderer is an exception to this: it is not included as an overlay despite being
derived from PiRenderer (page 131).

New in version 1.8.

preview
Retrieves the PiRenderer (page 131) displaying the camera preview.

If no preview is currently active, preview (page 117) will return None. Otherwise, it will return the
instance of PiRenderer (page 131) which is currently connected to the camera’s preview port for
rendering what the camera sees. You can use the attributes of the PiRenderer (page 131) class to
configure the appearance of the preview. For example, to make the preview semi-transparent:

import picamera

with picamera.PiCamera() as camera:
camera.start_preview()
camera.preview.alpha = 128

New in version 1.8.

preview_alpha
Retrieves or sets the opacity of the preview window.

Deprecated since version 1.8: Please use the alpha (page 131) attribute of the preview (page 117)
object instead.

preview_fullscreen
Retrieves or sets full-screen for the preview window.

Deprecated since version 1.8: Please use the fullscreen (page 132) attribute of the preview
(page 117) object instead.

preview_layer
Retrieves or sets the layer of the preview window.

Deprecated since version 1.8: Please use the layer (page 132) attribute of the preview (page 117)
object instead.

preview_window
Retrieves or sets the size of the preview window.

Deprecated since version 1.8: Please use the window (page 133) attribute of the preview (page 117)
object instead.

previewing
Returns True if the start_preview() (page 103) method has been called, and no
stop_preview() (page 104) call has been made yet.

Deprecated since version 1.8: Test whether preview (page 117) is None instead.

raw_format
Retrieves or sets the raw format of the camera’s ports.

Deprecated since version 1.0: Please use 'yuv' or 'rgb' directly as a format in the various capture
methods instead.

recording
Returns True if the start_recording() (page 103) method has been called, and no
stop_recording() (page 105) call has been made yet.

9.1. PiCamera 117

Picamera 1.13 Documentation, Release 1.13

resolution
Retrieves or sets the resolution at which image captures, video recordings, and previews will be cap-
tured.

When queried, the resolution (page 117) property returns the resolution at which the cam-
era will operate as a tuple of (width, height) measured in pixels. This is the resolu-
tion that the capture() (page 97) method will produce images at, and the resolution that
start_recording() (page 103) will produce videos at.

When set, the property configures the camera so that the next call to these methods will use the new
resolution. The resolution can be specified as a (width, height) tuple, as a string formatted
'WIDTHxHEIGHT', or as a string containing a commonly recognized display resolution156 name
(e.g. “VGA”, “HD”, “1080p”, etc). For example, the following definitions are all equivalent:

camera.resolution = (1280, 720)
camera.resolution = '1280x720'
camera.resolution = '1280 x 720'
camera.resolution = 'HD'
camera.resolution = '720p'

The camera must not be closed, and no recording must be active when the property is set.

Note: This attribute, in combination with framerate (page 111), determines the mode that the
camera operates in. The actual sensor framerate and resolution used by the camera is influenced, but
not directly set, by this property. See sensor_mode (page 118) for more information.

The initial value of this property can be specified with the resolution parameter in the PiCamera
(page 95) constructor, and will default to the display’s resolution or 1280x720 if the display has been
disabled (with tvservice -o).

Changed in version 1.11: Resolution permitted to be set as a string. Preview resolution added as
separate property.

revision
Returns a string representing the revision of the Pi’s camera module. At the time of writing, the string
returned is ‘ov5647’ for the V1 module, and ‘imx219’ for the V2 module.

rotation
Retrieves or sets the current rotation of the camera’s image.

When queried, the rotation (page 118) property returns the rotation applied to the image. Valid
values are 0, 90, 180, and 270.

When set, the property changes the rotation applied to the camera’s input. The property can be set
while recordings or previews are in progress. The default value is 0.

saturation
Retrieves or sets the saturation setting of the camera.

When queried, the saturation (page 118) property returns the color saturation of the camera as an
integer between -100 and 100. When set, the property adjusts the saturation of the camera. Saturation
can be adjusted while previews or recordings are in progress. The default value is 0.

sensor_mode
Retrieves or sets the input mode of the camera’s sensor.

This is an advanced property which can be used to control the camera’s sensor mode. By default,
mode 0 is used which allows the camera to automatically select an input mode based on the requested
resolution (page 117) and framerate (page 111). Valid values are currently between 0 and 7.
The set of valid sensor modes (along with the heuristic used to select one automatically) are detailed
in the Sensor Modes (page 75) section of the documentation.

156 https://en.wikipedia.org/wiki/Graphics_display_resolution

118 Chapter 9. API - The PiCamera Class

https://en.wikipedia.org/wiki/Graphics_display_resolution

Picamera 1.13 Documentation, Release 1.13

Note: At the time of writing, setting this property does nothing unless the camera has been initialized
with a sensor mode other than 0. Furthermore, some mode transitions appear to require setting the
property twice (in a row). This appears to be a firmware limitation.

The initial value of this property can be specified with the sensor_mode parameter in the PiCamera
(page 95) constructor, and will default to 0 if not specified.

New in version 1.9.

sharpness
Retrieves or sets the sharpness setting of the camera.

When queried, the sharpness (page 119) property returns the sharpness level of the camera (a
measure of the amount of post-processing to reduce or increase image sharpness) as an integer between
-100 and 100. When set, the property adjusts the sharpness of the camera. Sharpness can be adjusted
while previews or recordings are in progress. The default value is 0.

shutter_speed
Retrieves or sets the shutter speed of the camera in microseconds.

When queried, the shutter_speed (page 119) property returns the shutter speed of the camera
in microseconds, or 0 which indicates that the speed will be automatically determined by the auto-
exposure algorithm. Faster shutter times naturally require greater amounts of illumination and vice
versa.

When set, the property adjusts the shutter speed of the camera, which most obviously affects the illu-
mination of subsequently captured images. Shutter speed can be adjusted while previews or recordings
are running. The default value is 0 (auto).

Note: You can query the exposure_speed (page 110) attribute to determine the actual shutter
speed being used when this attribute is set to 0. Please note that this capability requires an up to date
firmware (#692 or later).

Note: In later firmwares, this attribute is limited by the value of the framerate (page 111) attribute.
For example, if framerate is set to 30fps, the shutter speed cannot be slower than 33,333µs (1/fps).

still_stats
Retrieves or sets whether statistics will be calculated from still frames or the prior preview frame.

When queried, the still_stats (page 119) property returns a boolean value indicating when scene
statistics will be calculated for still captures (that is, captures where the use_video_port parameter of
capture() (page 97) is False). When this property is False (the default), statistics will be
calculated from the preceding preview frame (this also applies when the preview is not visible). When
True, statistics will be calculated from the captured image itself.

When set, the propetry controls when scene statistics will be calculated for still captures. The property
can be set while recordings or previews are in progress. The default value is False.

The advantages to calculating scene statistics from the captured image are that time between startup
and capture is reduced as only the AGC (automatic gain control) has to converge. The downside is
that processing time for captures increases and that white balance and gain won’t necessarily match
the preview.

Warning: Enabling the still statistics pass will override fixed white balance157 gains (set via
awb_gains (page 106) and awb_mode (page 107)).

157 https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772

9.1. PiCamera 119

https://www.raspberrypi.org/forums/viewtopic.php?p=875772&sid=92fa4ea70d1fe24590a4cdfb4a10c489#p875772

Picamera 1.13 Documentation, Release 1.13

New in version 1.9.

timestamp
Retrieves the system time according to the camera firmware.

The camera’s timestamp is a 64-bit integer representing the number of microseconds since the last
system boot. When the camera’s clock_mode (page 107) is 'raw' the values returned by this
attribute are comparable to those from the frame (page 111) timestamp (page 121) attribute.

vflip
Retrieves or sets whether the camera’s output is vertically flipped.

When queried, the vflip (page 120) property returns a boolean indicating whether or not the cam-
era’s output is vertically flipped. The property can be set while recordings or previews are in progress.
The default value is False.

video_denoise
Retrieves or sets whether denoise will be applied to video recordings.

When queried, the video_denoise (page 120) property returns a boolean value indicating whether
or not the camera software will apply a denoise algorithm to video recordings.

When set, the property activates or deactivates the denoise algorithm for video recordings. The prop-
erty can be set while recordings or previews are in progress. The default value is True.

New in version 1.7.

video_stabilization
Retrieves or sets the video stabilization mode of the camera.

When queried, the video_stabilization (page 120) property returns a boolean value indicating
whether or not the camera attempts to compensate for motion.

When set, the property activates or deactivates video stabilization. The property can be set while
recordings or previews are in progress. The default value is False.

Note: The built-in video stabilization only accounts for vertical and horizontal motion158, not rotation.

zoom
Retrieves or sets the zoom applied to the camera’s input.

When queried, the zoom (page 120) property returns a (x, y, w, h) tuple of floating point values
ranging from 0.0 to 1.0, indicating the proportion of the image to include in the output (this is also
known as the “Region of Interest” or ROI). The default value is (0.0, 0.0, 1.0, 1.0) which
indicates that everything should be included. The property can be set while recordings or previews are
in progress.

9.2 PiVideoFrameType

class picamera.PiVideoFrameType
This class simply defines constants used to represent the type of a frame in PiVideoFrame.
frame_type (page 121). Effectively it is a namespace for an enum.

frame
Indicates a predicted frame (P-frame). This is the most common frame type.

key_frame
Indicates an intra-frame (I-frame) also known as a key frame.

sps_header
Indicates an inline SPS/PPS header (rather than picture data) which is typically used as a split point.

158 https://www.raspberrypi.org/forums/viewtopic.php?p=342667&sid=ec7d95e887ab74a90ffaab87888c48cd#p342667

120 Chapter 9. API - The PiCamera Class

https://www.raspberrypi.org/forums/viewtopic.php?p=342667&sid=ec7d95e887ab74a90ffaab87888c48cd#p342667

Picamera 1.13 Documentation, Release 1.13

motion_data
Indicates the frame is inline motion vector data, rather than picture data.

New in version 1.5.

9.3 PiVideoFrame

class picamera.PiVideoFrame(index, frame_type, frame_size, video_size, split_size, timestamp)
This class is a namedtuple()159 derivative used to store information about a video frame. It is rec-
ommended that you access the information stored by this class by attribute name rather than position (for
example: frame.index rather than frame[0]).

index
Returns the zero-based number of the frame. This is a monotonic counter that is simply incremented
every time the camera starts outputting a new frame. As a consequence, this attribute cannot be used
to detect dropped frames. Nor does it necessarily represent actual frames; it will be incremented for
SPS headers and motion data buffers too.

frame_type
Returns a constant indicating the kind of data that the frame contains (see PiVideoFrameType
(page 120)). Please note that certain frame types contain no image data at all.

frame_size
Returns the size in bytes of the current frame. If a frame is written in multiple chunks, this value
will increment while index (page 121) remains static. Query complete (page 121) to determine
whether the frame has been completely output yet.

video_size
Returns the size in bytes of the entire video up to this frame. Note that this is unlikely to match the
size of the actual file/stream written so far. This is because a stream may utilize buffering which will
cause the actual amount written (e.g. to disk) to lag behind the value reported by this attribute.

split_size
Returns the size in bytes of the video recorded since the last call to either start_recording()
(page 103) or split_recording() (page 102). For the reasons explained above, this may differ
from the size of the actual file/stream written so far.

timestamp
Returns the presentation timestamp (PTS) of the frame. This represents the point in time that the Pi
received the first line of the frame from the camera.

The timestamp is measured in microseconds (millionths of a second). When the camera’s clock mode
is 'reset' (the default), the timestamp is relative to the start of the video recording. When the
camera’s clock_mode (page 107) is 'raw', it is relative to the last system reboot. See timestamp
(page 120) for more information.

Warning: Currently, the camera occasionally returns “time unknown” values in this field which
picamera represents as None. If you are querying this property you will need to check the value is
not None before using it. This happens for SPS header “frames”, for example.

complete
Returns a bool indicating whether the current frame is complete or not. If the frame is complete then
frame_size (page 121) will not increment any further, and will reset for the next frame.

Changed in version 1.5: Deprecated header (page 121) and keyframe (page 122) attributes and added
the new frame_type (page 121) attribute instead.

Changed in version 1.9: Added the complete (page 121) attribute.

159 https://docs.python.org/3.4/library/collections.html#collections.namedtuple

9.3. PiVideoFrame 121

https://docs.python.org/3.4/library/collections.html#collections.namedtuple

Picamera 1.13 Documentation, Release 1.13

header
Contains a bool indicating whether the current frame is actually an SPS/PPS header. Typically it is
best to split an H.264 stream so that it starts with an SPS/PPS header.

Deprecated since version 1.5: Please compare frame_type (page 121) to PiVideoFrameType.
sps_header (page 120) instead.

keyframe
Returns a bool indicating whether the current frame is a keyframe (an intra-frame, or I-frame in MPEG
parlance).

Deprecated since version 1.5: Please compare frame_type (page 121) to PiVideoFrameType.
key_frame (page 120) instead.

position
Returns the zero-based position of the frame in the stream containing it.

9.4 PiResolution

class picamera.PiResolution(width, height)
A namedtuple()160 derivative which represents a resolution with a width (page 122) and height
(page 122).

width
The width of the resolution in pixels

height
The height of the resolution in pixels

New in version 1.11.

pad(width=32, height=16)
Returns the resolution padded up to the nearest multiple of width and height which default to 32 and
16 respectively (the camera’s native block size for most operations). For example:

>>> PiResolution(1920, 1080).pad()
PiResolution(width=1920, height=1088)
>>> PiResolution(100, 100).pad(16, 16)
PiResolution(width=128, height=112)
>>> PiResolution(100, 100).pad(16, 16)
PiResolution(width=112, height=112)

transpose()
Returns the resolution with the width and height transposed. For example:

>>> PiResolution(1920, 1080).transpose()
PiResolution(width=1080, height=1920)

9.5 PiFramerateRange

class picamera.PiFramerateRange(low, high)
This class is a namedtuple()161 derivative used to store the low and high limits of a range of framerates.
It is recommended that you access the information stored by this class by attribute rather than position (for
example: camera.framerate_range.low rather than camera.framerate_range[0]).

160 https://docs.python.org/3.4/library/collections.html#collections.namedtuple
161 https://docs.python.org/3.4/library/collections.html#collections.namedtuple

122 Chapter 9. API - The PiCamera Class

https://docs.python.org/3.4/library/collections.html#collections.namedtuple
https://docs.python.org/3.4/library/collections.html#collections.namedtuple

Picamera 1.13 Documentation, Release 1.13

low
The lowest framerate that the camera is permitted to use (inclusive). When the framerate_range
(page 113) attribute is queried, this value will always be returned as a Fraction162.

high
The highest framerate that the camera is permitted to use (inclusive). When the framerate_range
(page 113) attribute is queried, this value will always be returned as a Fraction163.

New in version 1.13.

162 https://docs.python.org/3.4/library/fractions.html#fractions.Fraction
163 https://docs.python.org/3.4/library/fractions.html#fractions.Fraction

9.5. PiFramerateRange 123

https://docs.python.org/3.4/library/fractions.html#fractions.Fraction
https://docs.python.org/3.4/library/fractions.html#fractions.Fraction

Picamera 1.13 Documentation, Release 1.13

124 Chapter 9. API - The PiCamera Class

CHAPTER 10

API - Streams

The picamera library defines a few custom stream implementations useful for implementing certain common use
cases (like security cameras which only record video upon some external trigger like a motion sensor).

10.1 PiCameraCircularIO

class picamera.PiCameraCircularIO(camera, size=None, seconds=None, bitrate=17000000,
splitter_port=1)

A derivative of CircularIO (page 126) which tracks camera frames.

PiCameraCircularIO provides an in-memory stream based on a ring buffer. It is a specialization of
CircularIO (page 126) which associates video frame meta-data with the recorded stream, accessible
from the frames (page 126) property.

Warning: The class makes a couple of assumptions which will cause the frame meta-data tracking to
break if they are not adhered to:

• the stream is only ever appended to - no writes ever start from the middle of the stream

• the stream is never truncated (from the right; being ring buffer based, left truncation will occur
automatically); the exception to this is the clear() (page 126) method.

The camera parameter specifies the PiCamera (page 95) instance that will be recording video to the
stream. If specified, the size parameter determines the maximum size of the stream in bytes. If size is not
specified (or None), then seconds must be specified instead. This provides the maximum length of the
stream in seconds, assuming a data rate in bits-per-second given by the bitrate parameter (which defaults to
17000000, or 17Mbps, which is also the default bitrate used for video recording by PiCamera (page 95)).
You cannot specify both size and seconds.

The splitter_port parameter specifies the port of the built-in splitter that the video encoder will be at-
tached to. This defaults to 1 and most users will have no need to specify anything different. If you
do specify something else, ensure it is equal to the splitter_port parameter of the corresponding call to
start_recording() (page 103). For example:

import picamera

(continues on next page)

125

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

with picamera.PiCamera() as camera:
with picamera.PiCameraCircularIO(camera, splitter_port=2) as stream:

camera.start_recording(stream, format='h264', splitter_port=2)
camera.wait_recording(10, splitter_port=2)
camera.stop_recording(splitter_port=2)

frames
Returns an iterator over the frame meta-data.

As the camera records video to the stream, the class captures the meta-data associated with each frame
(in the form of a PiVideoFrame (page 121) tuple), discarding meta-data for frames which are no
longer fully stored within the underlying ring buffer. You can use the frame meta-data to locate, for
example, the first keyframe present in the stream in order to determine an appropriate range to extract.

clear()
Resets the stream to empty safely.

This method truncates the stream to empty, and clears the associated frame meta-data too, ensuring
that subsequent writes operate correctly (see the warning in the PiCameraCircularIO (page 125)
class documentation).

copy_to(output, size=None, seconds=None, first_frame=PiVideoFrameType.sps_header)
Copies content from the stream to output.

By default, this method copies all complete frames from the circular stream to the filename or file-like
object given by output.

If size is specified then the copy will be limited to the whole number of frames that fit within the
specified number of bytes. If seconds if specified, then the copy will be limited to that number of
seconds worth of frames. Only one of size or seconds can be specified. If neither is specified, all
frames are copied.

If first_frame is specified, it defines the frame type of the first frame to be copied. By default this is
sps_header (page 120) as this must usually be the first frame in an H264 stream. If first_frame is
None, not such limit will be applied.

Warning: Note that if a frame of the specified type (e.g. SPS header) cannot be found within the
specified number of seconds or bytes then this method will simply copy nothing (but no error will
be raised).

The stream’s position is not affected by this method.

10.2 CircularIO

class picamera.CircularIO(size)
A thread-safe stream which uses a ring buffer for storage.

CircularIO provides an in-memory stream similar to the io.BytesIO164 class. However, unlike io.
BytesIO165 its underlying storage is a ring buffer166 with a fixed maximum size. Once the maximum
size is reached, writing effectively loops round to the beginning to the ring and starts overwriting the oldest
content.

The size parameter specifies the maximum size of the stream in bytes. The read() (page 127), tell()
(page 127), and seek() (page 127) methods all operate equivalently to those in io.BytesIO167 whilst

164 https://docs.python.org/3.4/library/io.html#io.BytesIO
165 https://docs.python.org/3.4/library/io.html#io.BytesIO
166 https://en.wikipedia.org/wiki/Circular_buffer
167 https://docs.python.org/3.4/library/io.html#io.BytesIO

126 Chapter 10. API - Streams

https://docs.python.org/3.4/library/io.html#io.BytesIO
https://docs.python.org/3.4/library/io.html#io.BytesIO
https://docs.python.org/3.4/library/io.html#io.BytesIO
https://en.wikipedia.org/wiki/Circular_buffer
https://docs.python.org/3.4/library/io.html#io.BytesIO

Picamera 1.13 Documentation, Release 1.13

write() (page 127) only differs in the wrapping behaviour described above. A read1() (page 127)
method is also provided for efficient reading of the underlying ring buffer in write-sized chunks (or less).

A re-entrant threading lock guards all operations, and is accessible for external use via the lock (page 127)
attribute.

The performance of the class is geared toward faster writing than reading on the assumption that writing will
be the common operation and reading the rare operation (a reasonable assumption for the camera use-case,
but not necessarily for more general usage).

getvalue()
Return bytes containing the entire contents of the buffer.

read(n=-1)
Read up to n bytes from the stream and return them. As a convenience, if n is unspecified or -1,
readall() (page 127) is called. Fewer than n bytes may be returned if there are fewer than n bytes
from the current stream position to the end of the stream.

If 0 bytes are returned, and n was not 0, this indicates end of the stream.

read1(n=-1)
Read up to n bytes from the stream using only a single call to the underlying object.

In the case of CircularIO (page 126) this roughly corresponds to returning the content from the
current position up to the end of the write that added that content to the stream (assuming no subsequent
writes overwrote the content). read1() (page 127) is particularly useful for efficient copying of the
stream’s content.

readable()
Returns True, indicating that the stream supports read() (page 127).

readall()
Read and return all bytes from the stream until EOF, using multiple calls to the stream if necessary.

seek(offset, whence=0)
Change the stream position to the given byte offset. offset is interpreted relative to the position indi-
cated by whence. Values for whence are:

• SEEK_SET or 0 – start of the stream (the default); offset should be zero or positive

• SEEK_CUR or 1 – current stream position; offset may be negative

• SEEK_END or 2 – end of the stream; offset is usually negative

Return the new absolute position.

seekable()
Returns True, indicating the stream supports seek() (page 127) and tell() (page 127).

tell()
Return the current stream position.

truncate(size=None)
Resize the stream to the given size in bytes (or the current position if size is not specified). This
resizing can extend or reduce the current stream size. In case of extension, the contents of the new file
area will be NUL (\x00) bytes. The new stream size is returned.

The current stream position isn’t changed unless the resizing is expanding the stream, in which case it
may be set to the maximum stream size if the expansion causes the ring buffer to loop around.

writable()
Returns True, indicating that the stream supports write() (page 127).

write(b)
Write the given bytes or bytearray object, b, to the underlying stream and return the number of bytes
written.

lock
A re-entrant threading lock which is used to guard all operations.

10.2. CircularIO 127

Picamera 1.13 Documentation, Release 1.13

size
Return the maximum size of the buffer in bytes.

10.3 BufferIO

class picamera.BufferIO(obj)
A stream which uses a memoryview168 for storage.

This is used internally by picamera for capturing directly to an existing object which supports the buffer
protocol (like a numpy array). Because the underlying storage is fixed in size, the stream also has a fixed
size and will raise an IOError169 exception if an attempt is made to write beyond the end of the buffer
(though seek beyond the end is supported).

Users should never need this class directly.

close()
Flush and close the IO object.

This method has no effect if the file is already closed.

getvalue()
Return bytes containing the entire contents of the buffer.

read(n=-1)
Read up to n bytes from the buffer and return them. As a convenience, if n is unspecified or -1,
readall() (page 128) is called. Fewer than n bytes may be returned if there are fewer than n bytes
from the current buffer position to the end of the buffer.

If 0 bytes are returned, and n was not 0, this indicates end of the buffer.

readable()
Returns True, indicating that the stream supports read() (page 128).

readall()
Read and return all bytes from the buffer until EOF.

readinto(b)
Read bytes into a pre-allocated, writable bytes-like object b, and return the number of bytes read.

seek(offset, whence=0)
Change the buffer position to the given byte offset. offset is interpreted relative to the position indicated
by whence. Values for whence are:

• SEEK_SET or 0 – start of the buffer (the default); offset should be zero or positive

• SEEK_CUR or 1 – current buffer position; offset may be negative

• SEEK_END or 2 – end of the buffer; offset is usually negative

Return the new absolute position.

seekable()
Returns True, indicating the stream supports seek() (page 128) and tell() (page 128).

tell()
Return the current buffer position.

truncate(size=None)
Raises NotImplementedError170 as the underlying buffer cannot be resized.

writable()
Returns True, indicating that the stream supports write() (page 128).

168 https://docs.python.org/3.4/library/stdtypes.html#memoryview
169 https://docs.python.org/3.4/library/exceptions.html#IOError
170 https://docs.python.org/3.4/library/exceptions.html#NotImplementedError

128 Chapter 10. API - Streams

https://docs.python.org/3.4/library/stdtypes.html#memoryview
https://docs.python.org/3.4/library/exceptions.html#IOError
https://docs.python.org/3.4/library/exceptions.html#NotImplementedError

Picamera 1.13 Documentation, Release 1.13

write(b)
Write the given bytes or bytearray object, b, to the underlying buffer and return the number of bytes
written. If the underlying buffer isn’t large enough to contain all the bytes of b, as many bytes as
possible will be written before raising IOError171.

size
Return the maximum size of the buffer in bytes.

171 https://docs.python.org/3.4/library/exceptions.html#IOError

10.3. BufferIO 129

https://docs.python.org/3.4/library/exceptions.html#IOError

Picamera 1.13 Documentation, Release 1.13

130 Chapter 10. API - Streams

CHAPTER 11

API - Renderers

Renderers are used by the camera to provide preview and overlay functionality on the Pi’s display. Users will rarely
need to construct instances of these classes directly (start_preview() (page 103) and add_overlay()
(page 96) are generally used instead) but may find the attribute references for them useful.

11.1 PiRenderer

class picamera.PiRenderer(parent, layer=0, alpha=255, fullscreen=True, window=None,
crop=None, rotation=0, vflip=False, hflip=False)

Wraps MMALRenderer (page 178) for use by PiCamera.

The parent parameter specifies the PiCamera (page 95) instance that has constructed this renderer. The
layer parameter specifies the layer that the renderer will inhabit. Higher numbered layers obscure lower
numbered layers (unless they are partially transparent). The initial opacity of the renderer is specified
by the alpha parameter (which defaults to 255, meaning completely opaque). The fullscreen parameter
which defaults to True indicates whether the renderer should occupy the entire display. Finally, the win-
dow parameter (which only has meaning when fullscreen is False) is a four-tuple of (x, y, width,
height) which gives the screen coordinates that the renderer should occupy when it isn’t full-screen.

This base class isn’t directly used by PiCamera (page 95), but the two derivatives defined below,
PiOverlayRenderer (page 133) and PiPreviewRenderer (page 134), are used to produce over-
lays and the camera preview respectively.

close()
Finalizes the renderer and deallocates all structures.

This method is called by the camera prior to destroying the renderer (or more precisely, letting it go
out of scope to permit the garbage collector to destroy it at some future time).

alpha
Retrieves or sets the opacity of the renderer.

When queried, the alpha (page 131) property returns a value between 0 and 255 indicating the
opacity of the renderer, where 0 is completely transparent and 255 is completely opaque. The default
value is 255. The property can be set while recordings or previews are in progress.

Note: If the renderer is being fed RGBA data (as in partially transparent overlays), the alpha property

131

Picamera 1.13 Documentation, Release 1.13

will be ignored.

crop
Retrieves or sets the area to read from the source.

The crop (page 132) property specifies the rectangular area that the renderer will read from the source
as a 4-tuple of (x, y, width, height). The special value (0, 0, 0, 0) (which is also the
default) means to read entire area of the source. The property can be set while recordings or previews
are active.

For example, if the camera’s resolution is currently configured as 1280x720, setting this attribute
to (160, 160, 640, 400) will crop the preview to the center 640x400 pixels of the input.
Note that this property does not affect the size of the output rectangle, which is controlled with
fullscreen (page 132) and window (page 133).

Note: This property only affects the renderer; it has no bearing on image captures or recordings
(unlike the zoom (page 120) property of the PiCamera (page 95) class).

fullscreen
Retrieves or sets whether the renderer appears full-screen.

The fullscreen (page 132) property is a bool which controls whether the renderer takes up the
entire display or not. When set to False, the window (page 133) property can be used to control the
precise size of the renderer display. The property can be set while recordings or previews are active.

hflip
Retrieves or sets whether the renderer’s output is horizontally flipped.

When queried, the vflip (page 132) property returns a boolean indicating whether or not the ren-
derer’s output is horizontally flipped. The property can be set while recordings or previews are in
progress. The default is False.

Note: This property only affects the renderer; it has no bearing on image captures or recordings
(unlike the hflip (page 113) property of the PiCamera (page 95) class).

layer
Retrieves or sets the layer of the renderer.

The layer (page 132) property is an integer which controls the layer that the renderer occupies.
Higher valued layers obscure lower valued layers (with 0 being the “bottom” layer). The default value
is 2. The property can be set while recordings or previews are in progress.

rotation
Retrieves or sets the current rotation of the renderer.

When queried, the rotation (page 132) property returns the rotation applied to the renderer. Valid
values are 0, 90, 180, and 270.

When set, the property changes the rotation applied to the renderer’s output. The property can be set
while recordings or previews are active. The default is 0.

Note: This property only affects the renderer; it has no bearing on image captures or recordings
(unlike the rotation (page 118) property of the PiCamera (page 95) class).

vflip
Retrieves or sets whether the renderer’s output is vertically flipped.

When queried, the vflip (page 132) property returns a boolean indicating whether or not the ren-
derer’s output is vertically flipped. The property can be set while recordings or previews are in
progress. The default is False.

132 Chapter 11. API - Renderers

Picamera 1.13 Documentation, Release 1.13

Note: This property only affects the renderer; it has no bearing on image captures or recordings
(unlike the vflip (page 120) property of the PiCamera (page 95) class).

window
Retrieves or sets the size of the renderer.

When the fullscreen (page 132) property is set to False, the window (page 133) property
specifies the size and position of the renderer on the display. The property is a 4-tuple consisting of
(x, y, width, height). The property can be set while recordings or previews are active.

11.2 PiOverlayRenderer

class picamera.PiOverlayRenderer(parent, source, resolution=None, format=None, layer=0,
alpha=255, fullscreen=True, window=None, crop=None,
rotation=0, vflip=False, hflip=False)

Represents an MMALRenderer (page 178) with a static source for overlays.

This class descends from PiRenderer (page 131) and adds a static source for the MMALRenderer
(page 178). The source must be an object that supports the buffer protocol172 in one of the supported
formats.

The optional resolution parameter specifies the size of the source as a (width, height) tuple. If this is
omitted or None then the resolution is assumed to be the same as the parent camera’s current resolution
(page 117). The optional format parameter specifies the encoding of the source. This can be one of the
unencoded formats: 'yuv', 'rgb', 'rgba', 'bgr', or 'bgra'. If omitted or None, format will be
guessed based on the size of source (assuming 3 bytes for RGB173, and 4 bytes for RGBA174).

The length of source must take into account that widths are rounded up to the nearest multiple of 32, and
heights to the nearest multiple of 16. For example, if resolution is (1280, 720), and format is 'rgb'
then source must be a buffer with length 1280 x 720 x 3 bytes, or 2,764,800 bytes (because 1280 is a
multiple of 32, and 720 is a multiple of 16 no extra rounding is required). However, if resolution is (97,
57), and format is 'rgb' then source must be a buffer with length 128 x 64 x 3 bytes, or 24,576 bytes
(pixels beyond column 97 and row 57 in the source will be ignored).

The layer, alpha, fullscreen, and window parameters are the same as in PiRenderer (page 131).

Changed in version 1.13: Added format parameter

update(source)
Update the overlay with a new source of data.

The new source buffer must have the same size as the original buffer used to create the overlay. There
is currently no method for changing the size of an existing overlay (remove and recreate the overlay if
you require this).

Note: If you repeatedly update an overlay renderer, you must make sure that you do so at a rate
equal to, or slower than, the camera’s framerate. Going faster will rapidly starve the renderer’s pool of
buffers leading to a runtime error.

172 https://docs.python.org/3.4/c-api/buffer.html#bufferobjects
173 https://en.wikipedia.org/wiki/RGB
174 https://en.wikipedia.org/wiki/RGBA_color_space

11.2. PiOverlayRenderer 133

https://docs.python.org/3.4/c-api/buffer.html#bufferobjects
https://en.wikipedia.org/wiki/RGB
https://en.wikipedia.org/wiki/RGBA_color_space

Picamera 1.13 Documentation, Release 1.13

11.3 PiPreviewRenderer

class picamera.PiPreviewRenderer(parent, source, resolution=None, layer=2, alpha=255,
fullscreen=True, window=None, crop=None, rotation=0,
vflip=False, hflip=False)

Represents an MMALRenderer (page 178) which uses the camera’s preview as a source.

This class descends from PiRenderer (page 131) and adds an MMALConnection (page 181) to connect
the renderer to an MMAL port. The source parameter specifies the MMALPort (page 179) to connect to the
renderer.

The layer, alpha, fullscreen, and window parameters are the same as in PiRenderer (page 131).

resolution
Retrieves or sets the resolution of the preview renderer.

By default, the preview’s resolution matches the camera’s resolution. However, particularly high reso-
lutions (such as the maximum resolution of the V2 camera module) can cause issues. In this case, you
may wish to set a lower resolution for the preview that the camera’s resolution.

When queried, the resolution (page 134) property returns None if the preview’s resolution is
derived from the camera’s. In this case, changing the camera’s resolution will also cause the preview’s
resolution to change. Otherwise, it returns the current preview resolution as a tuple.

Note: The preview resolution cannot be greater than the camera’s resolution (in either access). If
you set a preview resolution, then change the camera’s resolution below the preview’s resolution,
this property will silently revert to None, meaning the preview’s resolution will follow the camera’s
resolution.

When set, the property reconfigures the preview renderer with the new resolution. As a special case,
setting the property to None will cause the preview to follow the camera’s resolution once more. The
property can be set while recordings are in progress. The default is None.

Note: This property only affects the renderer; it has no bearing on image captures or recordings
(unlike the resolution (page 117) property of the PiCamera (page 95) class).

New in version 1.11.

11.4 PiNullSink

class picamera.PiNullSink(parent, source)
Implements an MMALNullSink (page 178) which can be used in place of a renderer.

The parent parameter specifies the PiCamera (page 95) instance which constructed this MMALNullSink
(page 178). The source parameter specifies the MMALPort (page 179) which the null-sink should connect
to its input.

The null-sink can act as a drop-in replacement for PiRenderer (page 131) in most cases, but obviously
doesn’t implement attributes like alpha, layer, etc. as it simply dumps any incoming frames. This is
also the reason that this class doesn’t derive from PiRenderer (page 131) like all other classes in this
module.

close()
Finalizes the null-sink and deallocates all structures.

This method is called by the camera prior to destroying the null-sink (or more precisely, letting it go
out of scope to permit the garbage collector to destroy it at some future time).

134 Chapter 11. API - Renderers

CHAPTER 12

API - Encoders

Encoders are typically used by the camera to compress captured images or video frames for output to disk. How-
ever, picamera also has classes representing “unencoded” output (raw RGB, etc). Most users will have no direct
need to use these classes directly, but advanced users may find them useful as base classes for Custom encoders
(page 47).

Note: It is strongly recommended that you familiarize yourself with the mmalobj (page 161) layer before
attempting to understand the encoder classes as they deal with several concepts native to that layer.

The inheritance diagram for the following classes is displayed below:

PiEncoder

PiImageEncoder

PiVideoEncoder

PiOneImageEncoder

PiMultiImageEncoder

PiRawMixin

PiRawImageMixin

PiRawOneImageEncoder

PiRawMultiImageEncoder

PiRawVideoEncoder

PiCookedOneImageEncoder

PiCookedMultiImageEncoder

PiCookedVideoEncoder

12.1 PiEncoder

class picamera.PiEncoder(parent, camera_port, input_port, format, resize, **options)
Base implementation of an MMAL encoder for use by PiCamera.

135

Picamera 1.13 Documentation, Release 1.13

The parent parameter specifies the PiCamera (page 95) instance that has constructed the encoder. The
camera_port parameter provides the MMAL camera port that the encoder should enable for capture (this
will be the still or video port of the camera component). The input_port parameter specifies the MMAL
port that the encoder should connect to its input. Sometimes this will be the same as the camera port, but if
other components are present in the pipeline (e.g. a splitter), it may be different.

The format parameter specifies the format that the encoder should produce in its output. This is specified as
a string and will be one of the following for image encoders:

• 'jpeg'

• 'png'

• 'gif'

• 'bmp'

• 'yuv'

• 'rgb'

• 'rgba'

• 'bgr'

• 'bgra'

And one of the following for video encoders:

• 'h264'

• 'mjpeg'

The resize parameter is either None (indicating no resizing should take place), or a (width, height)
tuple specifying the resolution that the output of the encoder should be resized to.

Finally, the options parameter specifies additional keyword arguments that can be used to configure the
encoder (e.g. bitrate for videos, or quality for images).

camera_port
The MMALVideoPort (page 180) that needs to be activated and deactivated in order to start/stop
capture. This is not necessarily the port that the encoder component’s input port is connected to
(for example, in the case of video-port based captures, this will be the camera video port behind the
splitter).

encoder
The MMALComponent (page 177) representing the encoder, or None if no encoder component
has been created (some encoder classes don’t use an actual encoder component, for example
PiRawImageMixin (page 141)).

event
A threading.Event175 instance used to synchronize operations (like start, stop, and split) between
the control thread and the callback thread.

exception
If an exception occurs during the encoder callback, this attribute is used to store the exception until it
can be re-raised in the control thread.

format
The image or video format that the encoder is expected to produce. This is equal to the value of the
format parameter.

input_port
The MMALVideoPort (page 180) that the encoder should be connected to.

175 https://docs.python.org/3.4/library/threading.html#threading.Event

136 Chapter 12. API - Encoders

https://docs.python.org/3.4/library/threading.html#threading.Event

Picamera 1.13 Documentation, Release 1.13

output_port
The MMALVideoPort (page 180) that produces the encoder’s output. In the case no encoder com-
ponent is created, this should be the camera/component output port responsible for producing data. In
other words, this attribute must be set on initialization.

outputs
A mapping of key to (output, opened) tuples where output is a file-like object, and opened
is a bool indicating whether or not we opened the output object (and thus whether we are responsible
for eventually closing it).

outputs_lock
A threading.Lock() instance used to protect access to outputs (page 137).

parent
The PiCamera (page 95) instance that created this PiEncoder instance.

pool
A pointer to a pool of MMAL buffers.

resizer
The MMALResizer (page 177) component, or None if no resizer component has been created.

_callback(port, buf)
The encoder’s main callback function.

When the encoder is active, this method is periodically called in a background thread. The port
parameter specifies the MMALPort providing the output (typically this is the encoder’s output port,
but in the case of unencoded captures may simply be a camera port), while the buf parameter is an
MMALBuffer (page 182) which can be used to obtain the data to write, along with meta-data about
the current frame.

This method must set event (page 136) when the encoder has finished (and should set exception
(page 136) if an exception occurred during encoding).

Developers wishing to write a custom encoder class may find it simpler to override the
_callback_write() (page 137) method, rather than deal with these complexities.

_callback_write(buf, key=PiVideoFrameType.frame)
Writes output on behalf of the encoder callback function.

This method is called by _callback() (page 137) to handle writing to an object in outputs
(page 137) identified by key. The buf parameter is an MMALBuffer (page 182) which can be used
to obtain the data. The method is expected to return a boolean to indicate whether output is complete
(True) or whether more data is expected (False).

The default implementation simply writes the contents of the buffer to the output identified by key,
and returns True if the buffer flags indicate end of stream. Image encoders will typically override the
return value to indicate True on end of frame (as they only wish to output a single image). Video
encoders will typically override this method to determine where key-frames and SPS headers occur.

_close_output(key=PiVideoFrameType.frame)
Closes the output associated with key in outputs (page 137).

Closes the output object associated with the specified key, and removes it from the outputs
(page 137) dictionary (if we didn’t open the object then we attempt to flush it instead).

_create_encoder(format)
Creates and configures the MMALEncoder (page 178) component.

This method only constructs the encoder; it does not connect it to the input port. The method sets
the encoder (page 136) attribute to the constructed encoder component, and the output_port
(page 136) attribute to the encoder’s output port (or the previously constructed resizer’s output port if
one has been requested). Descendent classes extend this method to finalize encoder configuration.

Note: It should be noted that this method is called with the initializer’s option keyword argu-
ments. This base implementation expects no additional arguments, but descendent classes extend the

12.1. PiEncoder 137

Picamera 1.13 Documentation, Release 1.13

parameter list to include options relevant to them.

_create_resizer(width, height)
Creates and configures an MMALResizer (page 177) component.

This is called when the initializer’s resize parameter is something other than None. The width and
height parameters are passed to the constructed resizer. Note that this method only constructs the
resizer - it does not connect it to the encoder. The method sets the resizer (page 137) attribute to
the constructed resizer component.

_open_output(output, key=PiVideoFrameType.frame)
Opens output and associates it with key in outputs (page 137).

If output is a string, this method opens it as a filename and keeps track of the fact that the encoder was
the one to open it (which implies that _close_output() (page 137) should eventually close it).
Otherwise, if output has a write method it is assumed to be a file-like object and it is used verbatim.
If output is neither a string, nor an object with a write method it is assumed to be a writeable object
supporting the buffer protocol (this is wrapped in a BufferIO (page 128) stream to simplify writing).

The opened output is added to the outputs (page 137) dictionary with the specified key.

close()
Finalizes the encoder and deallocates all structures.

This method is called by the camera prior to destroying the encoder (or more precisely, letting it go
out of scope to permit the garbage collector to destroy it at some future time). The method destroys
all components that the various create methods constructed and resets their attributes.

start(output)
Starts the encoder object writing to the specified output.

This method is called by the camera to start the encoder capturing data from the camera to the specified
output. The output parameter is either a filename, or a file-like object (for image and video encoders),
or an iterable of filenames or file-like objects (for multi-image encoders).

stop()
Stops the encoder, regardless of whether it’s finished.

This method is called by the camera to terminate the execution of the encoder. Typically, this is
used with video to stop the recording, but can potentially be called in the middle of image capture to
terminate the capture.

wait(timeout=None)
Waits for the encoder to finish (successfully or otherwise).

This method is called by the owning camera object to block execution until the encoder has completed
its task. If the timeout parameter is None, the method will block indefinitely. Otherwise, the timeout
parameter specifies the (potentially fractional) number of seconds to block for. If the encoder finishes
successfully within the timeout, the method returns True. Otherwise, it returns False.

active
Returns True if the MMAL encoder exists and is enabled.

12.2 PiVideoEncoder

class picamera.PiVideoEncoder(parent, camera_port, input_port, format, resize, **options)
Encoder for video recording.

This derivative of PiEncoder (page 135) configures itself for H.264 or MJPEG encoding. It also
introduces a split() (page 139) method which is used by split_recording() (page 102) and
record_sequence() (page 101) to redirect future output to a new filename or object. Finally, it also ex-
tends PiEncoder.start() (page 138) and PiEncoder._callback_write() (page 137) to track
video frame meta-data, and to permit recording motion data to a separate output object.

138 Chapter 12. API - Encoders

Picamera 1.13 Documentation, Release 1.13

encoder_type
alias of picamera.mmalobj.MMALVideoEncoder (page 178)

_callback_write(buf, key=0)
Extended to implement video frame meta-data tracking, and to handle splitting video recording to the
next output when split() (page 139) is called.

_create_encoder(format, bitrate=17000000, intra_period=None, profile=’high’,
level=’4’, quantization=0, quality=0, inline_headers=True, sei=False,
sps_timing=False, motion_output=None, intra_refresh=None)

Extends the base _create_encoder() (page 137) implementation to configure the video encoder
for H.264 or MJPEG output.

request_key_frame()
Called to request an I-frame from the encoder.

This method is called by request_key_frame() (page 102) and split() (page 139) to force
the encoder to output an I-frame as soon as possible.

split(output, motion_output=None)
Called to switch the encoder’s output.

This method is called by split_recording() (page 102) and record_sequence()
(page 101) to switch the encoder’s output object to the output parameter (which can be a filename
or a file-like object, as with start() (page 139)).

start(output, motion_output=None)
Extended to initialize video frame meta-data tracking.

stop()
Stops the encoder, regardless of whether it’s finished.

This method is called by the camera to terminate the execution of the encoder. Typically, this is
used with video to stop the recording, but can potentially be called in the middle of image capture to
terminate the capture.

12.3 PiImageEncoder

class picamera.PiImageEncoder(parent, camera_port, input_port, format, resize, **options)
Encoder for image capture.

This derivative of PiEncoder (page 135) extends the _create_encoder() (page 139) method to
configure the encoder for a variety of encoded image outputs (JPEG, PNG, etc.).

encoder_type
alias of picamera.mmalobj.MMALImageEncoder (page 178)

_create_encoder(format, quality=85, thumbnail=(64, 48, 35), restart=0)
Extends the base _create_encoder() (page 137) implementation to configure the image encoder
for JPEG, PNG, etc.

12.4 PiRawMixin

class picamera.PiRawMixin(parent, camera_port, input_port, format, resize, **options)
Mixin class for “raw” (unencoded) output.

This mixin class overrides the initializer of PiEncoder (page 135), along with _create_resizer()
and _create_encoder() (page 140) to configure the pipeline for unencoded output. Specifically, it
disables the construction of an encoder, and sets the output port to the input port passed to the initializer,
unless resizing is required (either for actual resizing, or for format conversion) in which case the resizer’s
output is used.

12.3. PiImageEncoder 139

Picamera 1.13 Documentation, Release 1.13

_callback_write(buf, key=PiVideoFrameType.frame)
Overridden to strip alpha bytes when required.

_create_encoder(format)
Overridden to skip creating an encoder. Instead, this class simply uses the resizer’s port as the output
port (if a resizer has been configured) or the specified input port otherwise.

12.5 PiCookedVideoEncoder

class picamera.PiCookedVideoEncoder(parent, camera_port, input_port, format, resize,
**options)

Video encoder for encoded recordings.

This class is a derivative of PiVideoEncoder (page 138) and only exists to provide naming symmetry
with the image encoder classes.

12.6 PiRawVideoEncoder

class picamera.PiRawVideoEncoder(parent, camera_port, input_port, format, resize, **op-
tions)

Video encoder for unencoded recordings.

This class is a derivative of PiVideoEncoder (page 138) and the PiRawMixin (page 139) class in-
tended for use with start_recording() (page 103) when it is called with an unencoded format.

Warning: This class creates an inheritance diamond. Take care to determine the MRO of super-class
calls.

_create_encoder(format)
Overridden to skip creating an encoder. Instead, this class simply uses the resizer’s port as the output
port (if a resizer has been configured) or the specified input port otherwise.

12.7 PiOneImageEncoder

class picamera.PiOneImageEncoder(parent, camera_port, input_port, format, resize, **op-
tions)

Encoder for single image capture.

This class simply extends _callback_write() (page 137) to terminate capture at frame end (i.e. after
a single frame has been received).

_callback_write(buf, key=PiVideoFrameType.frame)
Writes output on behalf of the encoder callback function.

This method is called by _callback() to handle writing to an object in outputs identified by key.
The buf parameter is an MMALBuffer (page 182) which can be used to obtain the data. The method
is expected to return a boolean to indicate whether output is complete (True) or whether more data is
expected (False).

The default implementation simply writes the contents of the buffer to the output identified by key,
and returns True if the buffer flags indicate end of stream. Image encoders will typically override the
return value to indicate True on end of frame (as they only wish to output a single image). Video
encoders will typically override this method to determine where key-frames and SPS headers occur.

140 Chapter 12. API - Encoders

Picamera 1.13 Documentation, Release 1.13

12.8 PiMultiImageEncoder

class picamera.PiMultiImageEncoder(parent, camera_port, input_port, format, resize, **op-
tions)

Encoder for multiple image capture.

This class extends PiImageEncoder (page 139) to handle an iterable of outputs instead of a single
output. The _callback_write() (page 137) method is extended to terminate capture when the iterable
is exhausted, while PiEncoder._open_output() (page 138) is overridden to begin iteration and rely
on the new _next_output() (page 141) method to advance output to the next item in the iterable.

_callback_write(buf, key=PiVideoFrameType.frame)
Writes output on behalf of the encoder callback function.

This method is called by _callback() to handle writing to an object in outputs identified by key.
The buf parameter is an MMALBuffer (page 182) which can be used to obtain the data. The method
is expected to return a boolean to indicate whether output is complete (True) or whether more data is
expected (False).

The default implementation simply writes the contents of the buffer to the output identified by key,
and returns True if the buffer flags indicate end of stream. Image encoders will typically override the
return value to indicate True on end of frame (as they only wish to output a single image). Video
encoders will typically override this method to determine where key-frames and SPS headers occur.

_next_output(key=0)
This method moves output to the next item from the iterable passed to start() (page 138).

_open_output(output, key=PiVideoFrameType.frame)
Opens output and associates it with key in outputs.

If output is a string, this method opens it as a filename and keeps track of the fact that the encoder was
the one to open it (which implies that _close_output() should eventually close it). Otherwise, if
output has a write method it is assumed to be a file-like object and it is used verbatim. If output is
neither a string, nor an object with a write method it is assumed to be a writeable object supporting
the buffer protocol (this is wrapped in a BufferIO (page 128) stream to simplify writing).

The opened output is added to the outputs dictionary with the specified key.

12.9 PiRawImageMixin

class picamera.PiRawImageMixin(parent, camera_port, input_port, format, resize, **options)
Mixin class for “raw” (unencoded) image capture.

The _callback_write() (page 141) method is overridden to manually calculate when to terminate
output.

_callback_write(buf, key=0)
Overridden to manually calculate when to terminate capture (see comments in __init__()).

start(output)
Starts the encoder object writing to the specified output.

This method is called by the camera to start the encoder capturing data from the camera to the specified
output. The output parameter is either a filename, or a file-like object (for image and video encoders),
or an iterable of filenames or file-like objects (for multi-image encoders).

12.10 PiCookedOneImageEncoder

class picamera.PiCookedOneImageEncoder(parent, camera_port, input_port, format, resize,
**options)

Encoder for “cooked” (encoded) single image output.

12.8. PiMultiImageEncoder 141

Picamera 1.13 Documentation, Release 1.13

This encoder extends PiOneImageEncoder (page 140) to include Exif tags in the output.

start(output)
Starts the encoder object writing to the specified output.

This method is called by the camera to start the encoder capturing data from the camera to the specified
output. The output parameter is either a filename, or a file-like object (for image and video encoders),
or an iterable of filenames or file-like objects (for multi-image encoders).

12.11 PiRawOneImageEncoder

class picamera.PiRawOneImageEncoder(parent, camera_port, input_port, format, resize,
**options)

Single image encoder for unencoded capture.

This class is a derivative of PiOneImageEncoder (page 140) and the PiRawImageMixin (page 141)
class intended for use with capture() (page 97) (et al) when it is called with an unencoded image format.

Warning: This class creates an inheritance diamond. Take care to determine the MRO of super-class
calls.

12.12 PiCookedMultiImageEncoder

class picamera.PiCookedMultiImageEncoder(parent, camera_port, input_port, format, re-
size, **options)

Encoder for “cooked” (encoded) multiple image output.

This encoder descends from PiMultiImageEncoder (page 141) but includes no new functionality as
video-port based encodes (which is all this class is used for) don’t support Exif tag output.

12.13 PiRawMultiImageEncoder

class picamera.PiRawMultiImageEncoder(parent, camera_port, input_port, format, resize,
**options)

Multiple image encoder for unencoded capture.

This class is a derivative of PiMultiImageEncoder (page 141) and the PiRawImageMixin
(page 141) class intended for use with capture_sequence() (page 100) when it is called with an
unencoded image format.

Warning: This class creates an inheritance diamond. Take care to determine the MRO of super-class
calls.

_next_output(key=0)
This method moves output to the next item from the iterable passed to start() (page 138).

142 Chapter 12. API - Encoders

CHAPTER 13

API - Exceptions

All exceptions defined by picamera are listed in this section. All exception classes utilize multiple inheritance in
order to make testing for exception types more intuitive. For example, PiCameraValueError (page 144) de-
rives from both PiCameraError (page 144) and ValueError176. Hence it will be caught by blocks intended
to catch any error specific to the picamera library:

try:
camera.brightness = int(some_user_value)

except PiCameraError:
print('Something went wrong with the camera')

Or by blocks intended to catch value errors:

try:
camera.contrast = int(some_user_value)

except ValueError:
print('Invalid value')

13.1 Warnings

exception picamera.PiCameraWarning
Bases: Warning177

Base class for PiCamera warnings.

exception picamera.PiCameraDeprecated
Bases: picamera.exc.PiCameraWarning, DeprecationWarning178

Raised when deprecated functionality in picamera is used.

exception picamera.PiCameraFallback
Bases: picamera.exc.PiCameraWarning, RuntimeWarning179

Raised when picamera has to fallback on old functionality.

176 https://docs.python.org/3.4/library/exceptions.html#ValueError
177 https://docs.python.org/3.4/library/exceptions.html#Warning
178 https://docs.python.org/3.4/library/exceptions.html#DeprecationWarning
179 https://docs.python.org/3.4/library/exceptions.html#RuntimeWarning

143

https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/exceptions.html#Warning
https://docs.python.org/3.4/library/exceptions.html#DeprecationWarning
https://docs.python.org/3.4/library/exceptions.html#RuntimeWarning

Picamera 1.13 Documentation, Release 1.13

exception picamera.PiCameraResizerEncoding
Bases: picamera.exc.PiCameraWarning, RuntimeWarning180

Raised when picamera uses a resizer purely for encoding purposes.

exception picamera.PiCameraAlphaStripping
Bases: picamera.exc.PiCameraWarning, RuntimeWarning181

Raised when picamera does alpha-byte stripping.

13.2 Exceptions

exception picamera.PiCameraError
Bases: Exception182

Base class for PiCamera errors.

exception picamera.PiCameraValueError
Bases: picamera.exc.PiCameraError, ValueError183

Raised when an invalid value is fed to a PiCamera (page 95) object.

exception picamera.PiCameraRuntimeError
Bases: picamera.exc.PiCameraError, RuntimeError184

Raised when an invalid sequence of operations is attempted with a PiCamera (page 95) object.

exception picamera.PiCameraClosed
Bases: picamera.exc.PiCameraRuntimeError

Raised when a method is called on a camera which has already been closed.

exception picamera.PiCameraNotRecording
Bases: picamera.exc.PiCameraRuntimeError

Raised when stop_recording() (page 105) or split_recording() (page 102) are called against
a port which has no recording active.

exception picamera.PiCameraAlreadyRecording
Bases: picamera.exc.PiCameraRuntimeError

Raised when start_recording() (page 103) or record_sequence() (page 101) are called against
a port which already has an active recording.

exception picamera.PiCameraMMALError(status, prefix=”)
Bases: picamera.exc.PiCameraError

Raised when an MMAL operation fails for whatever reason.

exception picamera.PiCameraPortDisabled(msg)
Bases: picamera.exc.PiCameraMMALError

Raised when attempting a buffer operation on a disabled port.

This exception is intended for the common use-case of attempting to get or send a buffer just when a
component is shutting down (e.g. at script teardown) and simplifies the trivial response (ignore the error
and shut down quietly). For example:

180 https://docs.python.org/3.4/library/exceptions.html#RuntimeWarning
181 https://docs.python.org/3.4/library/exceptions.html#RuntimeWarning
182 https://docs.python.org/3.4/library/exceptions.html#Exception
183 https://docs.python.org/3.4/library/exceptions.html#ValueError
184 https://docs.python.org/3.4/library/exceptions.html#RuntimeError

144 Chapter 13. API - Exceptions

https://docs.python.org/3.4/library/exceptions.html#RuntimeWarning
https://docs.python.org/3.4/library/exceptions.html#RuntimeWarning
https://docs.python.org/3.4/library/exceptions.html#Exception
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/exceptions.html#RuntimeError

Picamera 1.13 Documentation, Release 1.13

def _callback(self, port, buf):
try:

buf = self.outputs[0].get_buffer(False)
except PiCameraPortDisabled:

return True # shutting down
...

13.3 Functions

picamera.mmal_check(status, prefix=”)
Checks the return status of an mmal call and raises an exception on failure.

The status parameter is the result of an MMAL call. If status is anything other than MMAL_SUCCESS,
a PiCameraMMALError (page 144) exception is raised. The optional prefix parameter specifies a prefix
message to place at the start of the exception’s message to provide some context.

13.3. Functions 145

Picamera 1.13 Documentation, Release 1.13

146 Chapter 13. API - Exceptions

CHAPTER 14

API - Colors and Color Matching

The picamera library includes a comprehensive Color (page 147) class which is capable of converting between
numerous color representations and calculating color differences. Various ancillary classes can be used to manip-
ulate aspects of a color.

14.1 Color

class picamera.Color
The Color class is a tuple which represents a color as red, green, and blue components.

The class has a flexible constructor which allows you to create an instance from a variety of color systems
including RGB185, Y’UV186, Y’IQ187, HLS188, and HSV189. There are also explicit constructors for each of
these systems to allow you to force the use of a system in your code. For example, an instance of Color
(page 147) can be constructed in any of the following ways:

>>> Color('#f00')
<Color "#ff0000">
>>> Color('green')
<Color "#008000">
>>> Color(0, 0, 1)
<Color "#0000ff">
>>> Color(hue=0, saturation=1, value=0.5)
<Color "#7f0000">
>>> Color(y=0.4, u=-0.05, v=0.615)
<Color "#ff0f4c">

The specific forms that the default constructor will accept are enumerated below:

185 https://en.wikipedia.org/wiki/RGB_color_space
186 https://en.wikipedia.org/wiki/YUV
187 https://en.wikipedia.org/wiki/YIQ
188 https://en.wikipedia.org/wiki/HSL_and_HSV
189 https://en.wikipedia.org/wiki/HSL_and_HSV

147

https://en.wikipedia.org/wiki/RGB_color_space
https://en.wikipedia.org/wiki/YUV
https://en.wikipedia.org/wiki/YIQ
https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/HSL_and_HSV

Picamera 1.13 Documentation, Release 1.13

Style Description
Single positional parameter Equivalent to calling Color.from_string() (page 150).
Three positional parameters Equivalent to calling Color.from_rgb() (page 150) if all three pa-

rameters are between 0.0 and 1.0, or Color.from_rgb_bytes()
(page 150) otherwise.

Three named parameters: r,
g, b
Three named parameters:
red, green, blue
Three named parameters: y,
u, v

Equivalent to calling Color.from_yuv() (page 150) if y is between
0.0 and 1.0, u is between -0.436 and 0.436, and v is between -0.615 and
0.615, or Color.from_yuv_bytes() (page 150) otherwise.

Three named parameters: y,
i, q

Equivalent to calling Color.from_yiq() (page 150).

Three named parameters: h,
l, s

Equivalent to calling Color.from_hls() (page 149).

Three named parameters:
hue, lightness, saturation
Three named parameters: h,
s, v

Equivalent to calling Color.from_hsv() (page 149)

Three named parameters:
hue, saturation, value
Three named parameters: x,
y, z

Equivalent to calling Color.from_cie_xyz() (page 149)

Three named parameters: l,
a, b

Equivalent to calling Color.from_cie_lab() (page 149)

Three named parameters: l,
u, v

Equivalent to calling Color.from_cie_luv() (page 149)

If the constructor parameters do not conform to any of the variants in the table above, a ValueError190

will be thrown.

Internally, the color is always represented as 3 float values corresponding to the red, green, and blue com-
ponents of the color. These values take a value from 0.0 to 1.0 (least to full intensity). The class provides
several attributes which can be used to convert one color system into another:

>>> Color('#f00').hls
(0.0, 0.5, 1.0)
>>> Color.from_string('green').hue
Hue(deg=120.0)
>>> Color.from_rgb_bytes(0, 0, 255).yuv
(0.114, 0.435912, -0.099978)

As Color (page 147) derives from tuple, instances are immutable. While this provides the advantage that
they can be used as keys in a dict, it does mean that colors themselves cannot be directly manipulated (e.g.
by reducing the red component).

However, several auxilliary classes in the module provide the ability to perform simple transformations of
colors via operators which produce a new Color (page 147) instance. For example:

>>> Color('red') - Red(0.5)
<Color "#7f0000">
>>> Color('green') + Red(0.5)
<Color "#7f8000">
>>> Color.from_hls(0.5, 0.5, 1.0)
<Color "#00feff">
>>> Color.from_hls(0.5, 0.5, 1.0) * Lightness(0.8)
<Color "#00cbcc">
>>> (Color.from_hls(0.5, 0.5, 1.0) * Lightness(0.8)).hls
(0.5, 0.4, 1.0)

190 https://docs.python.org/3.4/library/exceptions.html#ValueError

148 Chapter 14. API - Colors and Color Matching

https://docs.python.org/3.4/library/exceptions.html#ValueError

Picamera 1.13 Documentation, Release 1.13

From the last example above one can see that even attributes not directly stored by the color (such as
lightness) can be manipulated in this fashion. In this case a Color (page 147) instance is constructed
from HLS (hue, lightness, saturation) values with a lightness of 0.5. This is multiplied by a Lightness
(page 152) instance with a value of 0.8 which constructs a new Color (page 147) with the same hue and
saturation, but a lightness of 0.5 * 0.8 = 0.4.

If an instance is converted to a string (with str()) it will return a string containing the 7-character HTML
code for the color (e.g. “#ff0000” for red). As can be seen in the examples above, a similar representation
is returned for repr()191.

difference(other, method=’euclid’)
Determines the difference between this color and other using the specified method. The method is
specified as a string, and the following methods are valid:

• ‘euclid’ - This is the default method. Calculate the Euclidian distance192. This is by far the fastest
method, but also the least accurate in terms of human perception.

• ‘cie1976’ - Use the CIE 1976193 formula for calculating the difference between two colors in CIE
Lab space.

• ‘cie1994g’ - Use the CIE 1994194 formula with the “graphic arts” bias for calculating the differ-
ence.

• ‘cie1994t’ - Use the CIE 1994195 forumula with the “textiles” bias for calculating the difference.

• ‘cie2000’ - Use the CIEDE 2000196 formula for calculating the difference.

Note that the Euclidian distance will be significantly different to the other calculations; effectively
this just measures the distance between the two colors by treating them as coordinates in a three
dimensional Euclidian space. All other methods are means of calculating a Delta E197 value in which
2.3 is considered a just-noticeable difference198 (JND).

Warning: This implementation has yet to receive any significant testing (constructor methods for
CIELab need to be added before this can be done).

classmethod from_cie_lab(l, a, b)
Construct a Color (page 147) from (L*, a*, b*) float values representing a color in the CIE Lab color
space199. The conversion assumes the sRGB working space with reference white D65.

classmethod from_cie_luv(l, u, v)
Construct a Color (page 147) from (L*, u*, v*) float values representing a color in the CIE Luv color
space200. The conversion assumes the sRGB working space with reference white D65.

classmethod from_cie_xyz(x, y, z)
Construct a Color (page 147) from (X, Y, Z) float values representing a color in the CIE 1931 color
space201. The conversion assumes the sRGB working space with reference white D65.

classmethod from_hls(h, l, s)
Construct a Color (page 147) from HLS202 (hue, lightness, saturation) floats between 0.0 and 1.0.

classmethod from_hsv(h, s, v)
Construct a Color (page 147) from HSV203 (hue, saturation, value) floats between 0.0 and 1.0.

191 https://docs.python.org/3.4/library/functions.html#repr
192 https://en.wikipedia.org/wiki/Euclidean_distance
193 https://en.wikipedia.org/wiki/Color_difference#CIE76
194 https://en.wikipedia.org/wiki/Color_difference#CIE94
195 https://en.wikipedia.org/wiki/Color_difference#CIE94
196 https://en.wikipedia.org/wiki/Color_difference#CIEDE2000
197 https://en.wikipedia.org/wiki/Color_difference
198 https://en.wikipedia.org/wiki/Just-noticeable_difference
199 https://en.wikipedia.org/wiki/Lab_color_space
200 https://en.wikipedia.org/wiki/CIELUV
201 https://en.wikipedia.org/wiki/CIE_1931_color_space
202 https://en.wikipedia.org/wiki/HSL_and_HSV
203 https://en.wikipedia.org/wiki/HSL_and_HSV

14.1. Color 149

https://docs.python.org/3.4/library/functions.html#repr
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Color_difference#CIE76
https://en.wikipedia.org/wiki/Color_difference#CIE94
https://en.wikipedia.org/wiki/Color_difference#CIE94
https://en.wikipedia.org/wiki/Color_difference#CIEDE2000
https://en.wikipedia.org/wiki/Color_difference
https://en.wikipedia.org/wiki/Just-noticeable_difference
https://en.wikipedia.org/wiki/Lab_color_space
https://en.wikipedia.org/wiki/Lab_color_space
https://en.wikipedia.org/wiki/CIELUV
https://en.wikipedia.org/wiki/CIELUV
https://en.wikipedia.org/wiki/CIE_1931_color_space
https://en.wikipedia.org/wiki/CIE_1931_color_space
https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/HSL_and_HSV

Picamera 1.13 Documentation, Release 1.13

classmethod from_rgb(r, g, b)
Construct a Color (page 147) from three RGB204 float values between 0.0 and 1.0.

classmethod from_rgb_565(n)
Construct a Color (page 147) from an unsigned 16-bit integer number in RGB565 format.

classmethod from_rgb_bytes(r, g, b)
Construct a Color (page 147) from three RGB205 byte values between 0 and 255.

classmethod from_string(s)
Construct a Color (page 147) from a 4 or 7 character CSS-like representation (e.g. “#f00” or
“#ff0000” for red), or from one of the named colors (e.g. “green” or “wheat”) from the CSS stan-
dard206. Any other string format will result in a ValueError207.

classmethod from_yiq(y, i, q)
Construct a Color (page 147) from three Y’IQ208 float values. Y’ can be between 0.0 and 1.0, while
I and Q can be between -1.0 and 1.0.

classmethod from_yuv(y, u, v)
Construct a Color (page 147) from three Y’UV209 float values. The Y value may be between 0.0 and
1.0. U may be between -0.436 and 0.436, while V may be between -0.615 and 0.615.

classmethod from_yuv_bytes(y, u, v)
Construct a Color (page 147) from three Y’UV210 byte values between 0 and 255. The U and V
values are biased by 128 to prevent negative values as is typical in video applications. The Y value is
biased by 16 for the same purpose.

blue
Returns the blue component of the color as a Blue (page 151) instance which can be used in operations
with other Color (page 147) instances.

cie_lab
Returns a 3-tuple of (L*, a*, b*) float values representing the color in the CIE Lab color space211 with
the D65 standard illuminant212.

cie_luv
Returns a 3-tuple of (L*, u*, v*) float values representing the color in the CIE Luv color space213 with
the D65 standard illuminant214.

cie_xyz
Returns a 3-tuple of (X, Y, Z) float values representing the color in the CIE 1931 color space215. The
conversion assumes the sRGB working space, with reference white D65.

green
Returns the green component of the color as a Green (page 151) instance which can be used in
operations with other Color (page 147) instances.

hls
Returns a 3-tuple of (hue, lightness, saturation) float values (between 0.0 and 1.0).

hsv
Returns a 3-tuple of (hue, saturation, value) float values (between 0.0 and 1.0).

204 https://en.wikipedia.org/wiki/RGB_color_space
205 https://en.wikipedia.org/wiki/RGB_color_space
206 http://www.w3.org/TR/css3-color/#svg-color
207 https://docs.python.org/3.4/library/exceptions.html#ValueError
208 https://en.wikipedia.org/wiki/YIQ
209 https://en.wikipedia.org/wiki/YUV
210 https://en.wikipedia.org/wiki/YUV
211 https://en.wikipedia.org/wiki/Lab_color_space
212 https://en.wikipedia.org/wiki/Illuminant_D65
213 https://en.wikipedia.org/wiki/CIELUV
214 https://en.wikipedia.org/wiki/Illuminant_D65
215 https://en.wikipedia.org/wiki/CIE_1931_color_space

150 Chapter 14. API - Colors and Color Matching

https://en.wikipedia.org/wiki/RGB_color_space
https://en.wikipedia.org/wiki/RGB_color_space
http://www.w3.org/TR/css3-color/#svg-color
http://www.w3.org/TR/css3-color/#svg-color
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://en.wikipedia.org/wiki/YIQ
https://en.wikipedia.org/wiki/YUV
https://en.wikipedia.org/wiki/YUV
https://en.wikipedia.org/wiki/Lab_color_space
https://en.wikipedia.org/wiki/Illuminant_D65
https://en.wikipedia.org/wiki/CIELUV
https://en.wikipedia.org/wiki/Illuminant_D65
https://en.wikipedia.org/wiki/CIE_1931_color_space

Picamera 1.13 Documentation, Release 1.13

hue
Returns the hue of the color as a Hue (page 152) instance which can be used in operations with other
Color (page 147) instances.

lightness
Returns the lightness of the color as a Lightness (page 152) instance which can be used in opera-
tions with other Color (page 147) instances.

red
Returns the red component of the color as a Red (page 151) instance which can be used in operations
with other Color (page 147) instances.

rgb
Returns a 3-tuple of (red, green, blue) float values (between 0.0 and 1.0).

rgb_565
Returns an unsigned 16-bit integer number representing the color in the RGB565 encoding.

rgb_bytes
Returns a 3-tuple of (red, green, blue) byte values.

saturation
Returns the saturation of the color as a Saturation (page 152) instance which can be used in
operations with other Color (page 147) instances.

yiq
Returns a 3-tuple of (y, i, q) float values; y values can be between 0.0 and 1.0, whilst i and q values
can be between -1.0 and 1.0.

yuv
Returns a 3-tuple of (y, u, v) float values; y values can be between 0.0 and 1.0, u values are between
-0.436 and 0.436, and v values are between -0.615 and 0.615.

yuv_bytes
Returns a 3-tuple of (y, u, v) byte values. Y values are biased by 16 in the result to prevent negatives.
U and V values are biased by 128 for the same purpose.

14.2 Manipulation Classes

class picamera.Red
Represents the red component of a Color (page 147) for use in transformations. Instances of this class can
be constructed directly with a float value, or by querying the Color.red (page 151) attribute. Addition,
subtraction, and multiplication are supported with Color (page 147) instances. For example:

>>> Color.from_rgb(0, 0, 0) + Red(0.5)
<Color "#7f0000">
>>> Color('#f00') - Color('#900').red
<Color "#660000">
>>> (Red(0.1) * Color('red')).red
Red(0.1)

class picamera.Green
Represents the green component of a Color (page 147) for use in transformations. Instances of this class
can be constructed directly with a float value, or by querying the Color.green (page 150) attribute.
Addition, subtraction, and multiplication are supported with Color (page 147) instances. For example:

>>> Color(0, 0, 0) + Green(0.1)
<Color "#001900">
>>> Color.from_yuv(1, -0.4, -0.6) - Green(1)
<Color "#50002f">
>>> (Green(0.5) * Color('white')).rgb
(Red(1.0), Green(0.5), Blue(1.0))

14.2. Manipulation Classes 151

Picamera 1.13 Documentation, Release 1.13

class picamera.Blue
Represents the blue component of a Color (page 147) for use in transformations. Instances of this class can
be constructed directly with a float value, or by querying the Color.blue (page 150) attribute. Addition,
subtraction, and multiplication are supported with Color (page 147) instances. For example:

>>> Color(0, 0, 0) + Blue(0.2)
<Color "#000033">
>>> Color.from_hls(0.5, 0.5, 1.0) - Blue(1)
<Color "#00fe00">
>>> Blue(0.9) * Color('white')
<Color "#ffffe5">

class picamera.Hue
Represents the hue of a Color (page 147) for use in transformations. Instances of this class can be con-
structed directly with a float value in the range [0.0, 1.0) representing an angle around the HSL hue wheel216.
As this is a circular mapping, 0.0 and 1.0 effectively mean the same thing, i.e. out of range values will be
normalized into the range [0.0, 1.0).

The class can also be constructed with the keyword arguments deg or rad if you wish to specify the
hue value in degrees or radians instead, respectively. Instances can also be constructed by querying the
Color.hue (page 150) attribute.

Addition, subtraction, and multiplication are supported with Color (page 147) instances. For example:

>>> Color(1, 0, 0).hls
(0.0, 0.5, 1.0)
>>> (Color(1, 0, 0) + Hue(deg=180)).hls
(0.5, 0.5, 1.0)

Note that whilst multiplication by a Hue (page 152) doesn’t make much sense, it is still supported. However,
the circular nature of a hue value can lead to suprising effects. In particular, since 1.0 is equivalent to 0.0
the following may be observed:

>>> (Hue(1.0) * Color.from_hls(0.5, 0.5, 1.0)).hls
(0.0, 0.5, 1.0)

class picamera.Saturation
Represents the saturation of a Color (page 147) for use in transformations. Instances of this class can
be constructed directly with a float value, or by querying the Color.saturation (page 151) attribute.
Addition, subtraction, and multiplication are supported with Color (page 147) instances. For example:

>>> Color(0.9, 0.9, 0.6) + Saturation(0.1)
<Color "#ebeb92">
>>> Color('red') - Saturation(1)
<Color "#7f7f7f">
>>> Saturation(0.5) * Color('wheat')
<Color "#e4d9c3">

class picamera.Lightness
Represents the lightness of a Color (page 147) for use in transformations. Instances of this class can
be constructed directly with a float value, or by querying the Color.lightness (page 151) attribute.
Addition, subtraction, and multiplication are supported with Color (page 147) instances. For example:

>>> Color(0, 0, 0) + Lightness(0.1)
<Color "#191919">
>>> Color.from_rgb_bytes(0x80, 0x80, 0) - Lightness(0.2)
<Color "#191900">
>>> Lightness(0.9) * Color('wheat')
<Color "#f0cd8d">

216 https://en.wikipedia.org/wiki/Hue

152 Chapter 14. API - Colors and Color Matching

https://en.wikipedia.org/wiki/Hue

CHAPTER 15

API - Arrays

The picamera library provides a set of classes designed to aid in construction of n-dimensional numpy217 arrays
from camera output. In order to avoid adding a hard dependency on numpy to picamera, this module (picamera.
array (page 153)) is not automatically imported by the main picamera package and must be explicitly imported,
e.g.:

import picamera
import picamera.array

15.1 PiArrayOutput

class picamera.array.PiArrayOutput(camera, size=None)
Base class for capture arrays.

This class extends io.BytesIO218 with a numpy219 array which is intended to be filled when flush()220

is called (i.e. at the end of capture).

array
After flush()221 is called, this attribute contains the frame’s data as a multi-dimensional numpy222

array. This is typically organized with the dimensions (rows, columns, plane). Hence, an
RGB image with dimensions x and y would produce an array with shape (y, x, 3).

close()
Disable all I/O operations.

truncate(size=None)
Resize the stream to the given size in bytes (or the current position if size is not specified). This
resizing can extend or reduce the current file size. The new file size is returned.

In prior versions of picamera, truncation also changed the position of the stream (because prior ver-
sions of these stream classes were non-seekable). This functionality is now deprecated; scripts should

217 http://www.numpy.org/
218 https://docs.python.org/3.4/library/io.html#io.BytesIO
219 http://www.numpy.org/
220 https://docs.python.org/3.4/library/io.html#io.IOBase.flush
221 https://docs.python.org/3.4/library/io.html#io.IOBase.flush
222 http://www.numpy.org/

153

http://www.numpy.org/
https://docs.python.org/3.4/library/io.html#io.BytesIO
http://www.numpy.org/
https://docs.python.org/3.4/library/io.html#io.IOBase.flush
https://docs.python.org/3.4/library/io.html#io.IOBase.flush
http://www.numpy.org/

Picamera 1.13 Documentation, Release 1.13

use seek()223 and truncate() (page 153) as one would with regular BytesIO224 instances.

15.2 PiRGBArray

class picamera.array.PiRGBArray(camera, size=None)
Produces a 3-dimensional RGB array from an RGB capture.

This custom output class can be used to easily obtain a 3-dimensional numpy array, organized (rows,
columns, colors), from an unencoded RGB capture. The array is accessed via the array (page 153)
attribute. For example:

import picamera
import picamera.array

with picamera.PiCamera() as camera:
with picamera.array.PiRGBArray(camera) as output:

camera.capture(output, 'rgb')
print('Captured %dx%d image' % (

output.array.shape[1], output.array.shape[0]))

You can re-use the output to produce multiple arrays by emptying it with truncate(0) between captures:

import picamera
import picamera.array

with picamera.PiCamera() as camera:
with picamera.array.PiRGBArray(camera) as output:

camera.resolution = (1280, 720)
camera.capture(output, 'rgb')
print('Captured %dx%d image' % (

output.array.shape[1], output.array.shape[0]))
output.truncate(0)
camera.resolution = (640, 480)
camera.capture(output, 'rgb')
print('Captured %dx%d image' % (

output.array.shape[1], output.array.shape[0]))

If you are using the GPU resizer when capturing (with the resize parameter of the various capture()
methods), specify the resized resolution as the optional size parameter when constructing the array output:

import picamera
import picamera.array

with picamera.PiCamera() as camera:
camera.resolution = (1280, 720)
with picamera.array.PiRGBArray(camera, size=(640, 360)) as output:

camera.capture(output, 'rgb', resize=(640, 360))
print('Captured %dx%d image' % (

output.array.shape[1], output.array.shape[0]))

flush()
Does nothing.

15.3 PiYUVArray

class picamera.array.PiYUVArray(camera, size=None)
Produces 3-dimensional YUV & RGB arrays from a YUV capture.

223 https://docs.python.org/3.4/library/io.html#io.IOBase.seek
224 https://docs.python.org/3.4/library/io.html#io.BytesIO

154 Chapter 15. API - Arrays

https://docs.python.org/3.4/library/io.html#io.IOBase.seek
https://docs.python.org/3.4/library/io.html#io.BytesIO

Picamera 1.13 Documentation, Release 1.13

This custom output class can be used to easily obtain a 3-dimensional numpy array, organized (rows,
columns, channel), from an unencoded YUV capture. The array is accessed via the array (page 153)
attribute. For example:

import picamera
import picamera.array

with picamera.PiCamera() as camera:
with picamera.array.PiYUVArray(camera) as output:

camera.capture(output, 'yuv')
print('Captured %dx%d image' % (

output.array.shape[1], output.array.shape[0]))

The rgb_array attribute can be queried for the equivalent RGB array (conversion is performed using the
ITU-R BT.601225 matrix):

import picamera
import picamera.array

with picamera.PiCamera() as camera:
with picamera.array.PiYUVArray(camera) as output:

camera.resolution = (1280, 720)
camera.capture(output, 'yuv')
print(output.array.shape)
print(output.rgb_array.shape)

If you are using the GPU resizer when capturing (with the resize parameter of the various capture()
(page 97) methods), specify the resized resolution as the optional size parameter when constructing the
array output:

import picamera
import picamera.array

with picamera.PiCamera() as camera:
camera.resolution = (1280, 720)
with picamera.array.PiYUVArray(camera, size=(640, 360)) as output:

camera.capture(output, 'yuv', resize=(640, 360))
print('Captured %dx%d image' % (

output.array.shape[1], output.array.shape[0]))

flush()
Does nothing.

15.4 PiBayerArray

class picamera.array.PiBayerArray(camera, output_dims=3)
Produces a 3-dimensional RGB array from raw Bayer data.

This custom output class is intended to be used with the capture() (page 97) method, with the bayer
parameter set to True, to include raw Bayer data in the JPEG output. The class strips out the raw data, and
constructs a numpy array from it. The resulting data is accessed via the array (page 153) attribute:

import picamera
import picamera.array

with picamera.PiCamera() as camera:
with picamera.array.PiBayerArray(camera) as output:

camera.capture(output, 'jpeg', bayer=True)
print(output.array.shape)

225 https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion

15.4. PiBayerArray 155

https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion

Picamera 1.13 Documentation, Release 1.13

The output_dims parameter specifies whether the resulting array is three-dimensional (the default, or when
output_dims is 3), or two-dimensional (when output_dims is 2). The three-dimensional data is already
separated into the three color planes, whilst the two-dimensional variant is not (in which case you need to
know the Bayer ordering to accurately deal with the results).

Note: Bayer data is usually full resolution, so the resulting array usually has the shape (1944, 2592, 3) with
the V1 module, or (2464, 3280, 3) with the V2 module (if two-dimensional output is requested the 3-layered
color dimension is omitted). If the camera’s sensor_mode (page 118) has been forced to something other
than 0, then the output will be the native size for the requested sensor mode.

This also implies that the optional size parameter (for specifying a resizer resolution) is not available with
this array class.

As the sensor records 10-bit values, the array uses the unsigned 16-bit integer data type.

By default, de-mosaicing226 is not performed; if the resulting array is viewed it will therefore appear dark
and too green (due to the green bias in the Bayer pattern227). A trivial weighted-average demosaicing
algorithm is provided in the demosaic() (page 156) method:

import picamera
import picamera.array

with picamera.PiCamera() as camera:
with picamera.array.PiBayerArray(camera) as output:

camera.capture(output, 'jpeg', bayer=True)
print(output.demosaic().shape)

Viewing the result of the de-mosaiced data will look more normal but still considerably worse quality
than the regular camera output (as none of the other usual post-processing steps like auto-exposure, white-
balance, vignette compensation, and smoothing have been performed).

Changed in version 1.13: This class now supports the V2 module properly, and handles flipped images, and
forced sensor modes correctly.

demosaic()
Perform a rudimentary de-mosaic228 of self.array, returning the result as a new array. The result
of the demosaic is always three dimensional, with the last dimension being the color planes (see
output_dims parameter on the constructor).

flush()
Does nothing.

15.5 PiMotionArray

class picamera.array.PiMotionArray(camera, size=None)
Produces a 3-dimensional array of motion vectors from the H.264 encoder.

This custom output class is intended to be used with the motion_output parameter of the
start_recording() (page 103) method. Once recording has finished, the class generates a 3-
dimensional numpy array organized as (frames, rows, columns) where rows and columns are the number
of rows and columns of macro-blocks229 (16x16 pixel blocks) in the original frames. There is always one
extra column of macro-blocks present in motion vector data.

The data-type of the array (page 153) is an (x, y, sad) structure where x and y are signed 1-byte values,
and sad is an unsigned 2-byte value representing the sum of absolute differences230 of the block. For

226 https://en.wikipedia.org/wiki/Demosaicing
227 https://en.wikipedia.org/wiki/Bayer_filter
228 https://en.wikipedia.org/wiki/Demosaicing
229 https://en.wikipedia.org/wiki/Macroblock
230 https://en.wikipedia.org/wiki/Sum_of_absolute_differences

156 Chapter 15. API - Arrays

https://en.wikipedia.org/wiki/Demosaicing
https://en.wikipedia.org/wiki/Bayer_filter
https://en.wikipedia.org/wiki/Demosaicing
https://en.wikipedia.org/wiki/Macroblock
https://en.wikipedia.org/wiki/Sum_of_absolute_differences

Picamera 1.13 Documentation, Release 1.13

example:

import picamera
import picamera.array

with picamera.PiCamera() as camera:
with picamera.array.PiMotionArray(camera) as output:

camera.resolution = (640, 480)
camera.start_recording(

'/dev/null', format='h264', motion_output=output)
camera.wait_recording(30)
camera.stop_recording()
print('Captured %d frames' % output.array.shape[0])
print('Frames are %dx%d blocks big' % (

output.array.shape[2], output.array.shape[1]))

If you are using the GPU resizer with your recording, use the optional size parameter to specify the resizer’s
output resolution when constructing the array:

import picamera
import picamera.array

with picamera.PiCamera() as camera:
camera.resolution = (640, 480)
with picamera.array.PiMotionArray(camera, size=(320, 240)) as output:

camera.start_recording(
'/dev/null', format='h264', motion_output=output,
resize=(320, 240))

camera.wait_recording(30)
camera.stop_recording()
print('Captured %d frames' % output.array.shape[0])
print('Frames are %dx%d blocks big' % (

output.array.shape[2], output.array.shape[1]))

Note: This class is not suitable for real-time analysis of motion vector data. See the PiMotionAnalysis
(page 158) class instead.

flush()
Does nothing.

15.6 PiAnalysisOutput

class picamera.array.PiAnalysisOutput(camera, size=None)
Base class for analysis outputs.

This class extends io.IOBase231 with a stub analyze() (page 157) method which will be called for
each frame output. In this base implementation the method simply raises NotImplementedError232.

analyse(array)
Deprecated alias of analyze() (page 157).

analyze(array)
Stub method for users to override.

writable()
Return whether object was opened for writing.

If False, write() will raise OSError.
231 https://docs.python.org/3.4/library/io.html#io.IOBase
232 https://docs.python.org/3.4/library/exceptions.html#NotImplementedError

15.6. PiAnalysisOutput 157

https://docs.python.org/3.4/library/io.html#io.IOBase
https://docs.python.org/3.4/library/exceptions.html#NotImplementedError

Picamera 1.13 Documentation, Release 1.13

15.7 PiRGBAnalysis

class picamera.array.PiRGBAnalysis(camera, size=None)
Provides a basis for per-frame RGB analysis classes.

This custom output class is intended to be used with the start_recording() (page 103) method when
it is called with format set to 'rgb' or 'bgr'. While recording is in progress, the write() method
converts incoming frame data into a numpy array and calls the stub analyze() (page 157) method with
the resulting array (this deliberately raises NotImplementedError233 in this class; you must override
it in your descendent class).

Note: If your overridden analyze() (page 157) method runs slower than the required framerate (e.g.
33.333ms when framerate is 30fps) then the camera’s effective framerate will be reduced. Furthermore, this
doesn’t take into account the overhead of picamera itself so in practice your method needs to be a bit faster
still.

The array passed to analyze() (page 157) is organized as (rows, columns, channel) where the channels
0, 1, and 2 are R, G, and B respectively (or B, G, R if format is 'bgr').

15.8 PiYUVAnalysis

class picamera.array.PiYUVAnalysis(camera, size=None)
Provides a basis for per-frame YUV analysis classes.

This custom output class is intended to be used with the start_recording() (page 103) method when
it is called with format set to 'yuv'. While recording is in progress, the write() method converts
incoming frame data into a numpy array and calls the stub analyze() (page 157) method with the result-
ing array (this deliberately raises NotImplementedError234 in this class; you must override it in your
descendent class).

Note: If your overridden analyze() (page 157) method runs slower than the required framerate (e.g.
33.333ms when framerate is 30fps) then the camera’s effective framerate will be reduced. Furthermore, this
doesn’t take into account the overhead of picamera itself so in practice your method needs to be a bit faster
still.

The array passed to analyze() (page 157) is organized as (rows, columns, channel) where the channel 0
is Y (luminance), while 1 and 2 are U and V (chrominance) respectively. The chrominance values normally
have quarter resolution of the luminance values but this class makes all channels equal resolution for ease
of use.

15.9 PiMotionAnalysis

class picamera.array.PiMotionAnalysis(camera, size=None)
Provides a basis for real-time motion analysis classes.

This custom output class is intended to be used with the motion_output parameter of the
start_recording() (page 103) method. While recording is in progress, the write method converts
incoming motion data into numpy arrays and calls the stub analyze() (page 157) method with the result-
ing array (which deliberately raises NotImplementedError235 in this class).

233 https://docs.python.org/3.4/library/exceptions.html#NotImplementedError
234 https://docs.python.org/3.4/library/exceptions.html#NotImplementedError
235 https://docs.python.org/3.4/library/exceptions.html#NotImplementedError

158 Chapter 15. API - Arrays

https://docs.python.org/3.4/library/exceptions.html#NotImplementedError
https://docs.python.org/3.4/library/exceptions.html#NotImplementedError
https://docs.python.org/3.4/library/exceptions.html#NotImplementedError

Picamera 1.13 Documentation, Release 1.13

Note: If your overridden analyze() (page 157) method runs slower than the required framerate (e.g.
33.333ms when framerate is 30fps) then the camera’s effective framerate will be reduced. Furthermore, this
doesn’t take into account the overhead of picamera itself so in practice your method needs to be a bit faster
still.

The array passed to analyze() (page 157) is organized as (rows, columns) where rows and columns
are the number of rows and columns of macro-blocks236 (16x16 pixel blocks) in the original frames. There
is always one extra column of macro-blocks present in motion vector data.

The data-type of the array is an (x, y, sad) structure where x and y are signed 1-byte values, and sad is an
unsigned 2-byte value representing the sum of absolute differences237 of the block.

An example of a crude motion detector is given below:

import numpy as np
import picamera
import picamera.array

class DetectMotion(picamera.array.PiMotionAnalysis):
def analyze(self, a):

a = np.sqrt(
np.square(a['x'].astype(np.float)) +
np.square(a['y'].astype(np.float))
).clip(0, 255).astype(np.uint8)

If there're more than 10 vectors with a magnitude greater
than 60, then say we've detected motion
if (a > 60).sum() > 10:

print('Motion detected!')

with picamera.PiCamera() as camera:
with DetectMotion(camera) as output:

camera.resolution = (640, 480)
camera.start_recording(

'/dev/null', format='h264', motion_output=output)
camera.wait_recording(30)
camera.stop_recording()

You can use the optional size parameter to specify the output resolution of the GPU resizer, if you are using
the resize parameter of start_recording() (page 103).

15.10 PiArrayTransform

class picamera.array.PiArrayTransform(formats=(’rgb’, ’bgr’, ’rgba’, ’bgra’))
A derivative of MMALPythonComponent (page 187) which eases the construction of custom MMAL
transforms by representing buffer data as numpy arrays. The formats parameter specifies the accepted input
formats as a sequence of strings (default: ‘rgb’, ‘bgr’, ‘rgba’, ‘bgra’).

Override the transform() (page 159) method to modify buffers sent to the component, then place it in
your MMAL pipeline as you would a normal encoder.

transform(source, target)
This method will be called for every frame passing through the transform. The source and target
parameters represent buffers from the input and output ports of the transform respectively. They will
be derivatives of MMALBuffer (page 182) which return a 3-dimensional numpy array when used as
context managers. For example:

236 https://en.wikipedia.org/wiki/Macroblock
237 https://en.wikipedia.org/wiki/Sum_of_absolute_differences

15.10. PiArrayTransform 159

https://en.wikipedia.org/wiki/Macroblock
https://en.wikipedia.org/wiki/Sum_of_absolute_differences

Picamera 1.13 Documentation, Release 1.13

def transform(self, source, target):
with source as source_array, target as target_array:

Copy the source array data to the target
target_array[...] = source_array
Draw a box around the edges
target_array[0, :, :] = 0xff
target_array[-1, :, :] = 0xff
target_array[:, 0, :] = 0xff
target_array[:, -1, :] = 0xff
return False

The target buffer’s meta-data starts out as a copy of the source buffer’s meta-data, but the target buffer’s
data starts out uninitialized.

160 Chapter 15. API - Arrays

CHAPTER 16

API - mmalobj

This module provides an object-oriented interface to libmmal which is the library underlying picamera,
raspistill, and raspivid. It is provided to ease the usage of libmmal to Python coders unfamiliar with
C and also works around some of the idiosyncrasies in libmmal.

Warning: This part of the API is still experimental and subject to change in future versions. Backwards
compatibility is not (yet) guaranteed.

16.1 The MMAL Tour

MMAL operates on the principle of pipelines:

• A pipeline consists of one or more MMAL components (MMALBaseComponent (page 176) and deriva-
tives) connected together in series.

• A MMALBaseComponent (page 176) has one or more ports.

• A port (MMALControlPort (page 178) and derivatives) is either a control port, an input port or an output
port (there are also clock ports but you generally don’t need to deal with these as MMAL sets them up
automatically):

– Control ports are used to accept and receive commands, configuration parameters, and error mes-
sages. All MMAL components have a control port, but in picamera they’re only used for component
configuration.

– Input ports receive data from upstream components.

– Output ports send data onto downstream components (if they’re connected), or to callback routines in
the user’s program (if they’re not connected).

– Input and output ports can be audio, video or sub-picture (subtitle) ports, but picamera only deals with
video ports.

– Ports have a format (page 180) which (in the case of video ports) dictates the format of image/frame
accepted or generated by the port (YUV, RGB, JPEG, H.264, etc.)

– Video ports have a framerate (page 180) which specifies the number of images expected to be
received or sent per second.

161

Picamera 1.13 Documentation, Release 1.13

– Video ports also have a framesize (page 181) which specifies the resolution of images/frames
accepted or generated by the port.

– Finally, all ports (control, input and output) have params (page 179) which affect their operation.

• An output port can have a MMALConnection (page 181) to an input port. Connections ensure the two
ports use compatible formats, and handle transferring data from output ports to input ports in an orderly
fashion. A port cannot have more than one connection from/to it.

• Data is written to / read from ports via instances of MMALBuffer (page 182).

– Buffers belong to a port and can’t be passed arbitrarily between ports.

– The size of a buffer is dictated by the format and frame-size of the port that owns the buffer. The
memory allocation of a buffer (readable from size (page 184)) cannot be altered once the port is
enabled, but the buffer can contain any amount of data up its allocation size. The actual length of data
in a buffer is stored in length (page 183).

– Likewise, the number of buffers belonging to a port is fixed and cannot be altered without disabling
the port, reconfiguring it and re-enabling it. The more buffers a port has, the less likely it is that the
pipeline will have to drop frames because a component has overrun, but the more GPU memory is
required.

– Buffers also have flags (page 183) which specify information about the data they contain (e.g. start
of frame, end of frame, key frame, etc.)

– When a connection exists between two ports, the connection continually requests a buffer from the
output port, requests another buffer from the input port, copies the output buffer’s data to the input
buffer’s data, then returns the buffers to their respective ports (this is a simplification; various tricks
are pulled under the covers to minimize the amount of data copying that actually occurs, but as a
mental model of what’s going on it’s reasonable).

– Components take buffers from their input port(s), process them, and write the result into a buffer from
the output port(s).

16.1.1 Components

Now we’ve got a mental model of what an MMAL pipeline consists of, let’s build one. For the rest of the tour I
strongly recommend using a Pi with a screen (so you can see preview output) but controlling it via an SSH session
(so the preview doesn’t cover your command line). Follow along, typing the examples into your remote Python
session. And feel free to deviate from the examples if you’re curious about things!

We’ll start by importing the mmalobj (page 161) module with a convenient alias, then construct a MMALCamera
(page 176) component, and a MMALRenderer (page 178) component.

>>> from picamera import mmal, mmalobj as mo
>>> camera = mo.MMALCamera()
>>> preview = mo.MMALRenderer()

16.1.2 Ports

Before going any further, let’s have a look at the various ports on these components.

>>> len(camera.inputs)
0
>>> len(camera.outputs)
3
>>> len(preview.inputs)
1
>>> len(preview.outputs)
0

162 Chapter 16. API - mmalobj

Picamera 1.13 Documentation, Release 1.13

The fact the camera has three outputs should come as little surprise to those who have read the Camera Hardware
(page 65) chapter (if you haven’t already, you might want to skim it now). Let’s examine the first output port of
the camera and the input port of the renderer:

>>> camera.outputs[0]
<MMALVideoPort "vc.ril.camera:out:0": format=MMAL_FOURCC('I420')
buffers=1x7680 frames=320x240@0fps>
>>> preview.inputs[0]
<MMALVideoPort "vc.ril.video_render:in:0" format=MMAL_FOURCC('I420')
buffers=2x15360 frames=160x64@0fps>

Several things to note here:

• We can tell from the port name what sort of component it belongs to, what its index is, and whether it’s an
input or an output port

• Both ports are currently configured for the I420 format; this is MMAL’s name for YUV420238 (full resolu-
tion Y, quarter resolution UV).

• The ports have different frame-sizes (320x240 and 160x64 respectively), buffer counts (1 and 2 respectively)
and buffer sizes (7680 and 15360 respectively).

• The buffer sizes look unrealistic. For example, 7680 bytes is nowhere near enough to hold 320 * 240 * 1.5
bytes (YUV420 requires 1.5 bytes per pixel).

Now we’ll configure the camera’s output port with a slightly higher resolution, and give it a frame-rate:

>>> camera.outputs[0].framesize = (640, 480)
>>> camera.outputs[0].framerate = 30
>>> camera.outputs[0].commit()
>>> camera.outputs[0]
<MMALVideoPort "vc.ril.camera:out:0(I420)": format=MMAL_FOURCC('I420')
buffers=1x460800 frames=640x480@30fps>

Note that the changes to the configuration won’t actually take effect until the commit() (page 179) call. After
the port is committed, note that the buffer size now looks reasonable: 640 * 480 * 1.5 = 460800.

16.1.3 Connections

Now we’ll try connecting the renderer’s input to the camera’s output. Don’t worry about the fact that the port
configurations are different. One of the nice things about MMAL (and the mmalobj layer) is that connections try
very hard to auto-configure things so that they “just work”. Usually, auto-configuration is based upon the output
port being connected so it’s important to get that configuration right, but you don’t generally need to worry about
the input port.

The renderer is what mmalobj terms a “downstream component”. This is a component with a single input
that typically sits downstream from some feeder component (like a camera). All such components have the
connect() (page 177) method which can be used to connect the sole input to a specified output:

>>> preview.connect(camera)
<MMALConnection "vc.ril.camera:out:0/vc.ril.video_render:in:0">
>>> preview.connection.enable()

Note that we’ve been quite lazy in the snippet above by simply calling connect() (page 177) with the camera
component. In this case, a connection will be attempted between the first input port of the owner (preview) and
the first unconnected output of the parameter (camera). However, this is not always what’s wanted so you can
specify the exact ports you wish to connect. In this case the example was equivalent to calling:

>>> preview.inputs[0].connect(camera.outputs[0])
<MMALConnection "vc.ril.camera:out:0/vc.ril.video_render:in:0">
>>> preview.inputs[0].connection.enable()

238 https://en.wikipedia.org/wiki/YUV#Y.E2.80.B2UV420p_.28and_Y.E2.80.B2V12_or_YV12.29_to_RGB888_conversion

16.1. The MMAL Tour 163

https://en.wikipedia.org/wiki/YUV#Y.E2.80.B2UV420p_.28and_Y.E2.80.B2V12_or_YV12.29_to_RGB888_conversion

Picamera 1.13 Documentation, Release 1.13

Note that the connect() (page 177) method returns the connection that was constructed but you can also retrieve
this by querying the port’s connection (page 180) attribute later.

As soon as the connection is enabled you should see the camera preview appear on the Pi’s screen. Let’s query the
port configurations now:

>>> camera.outputs[0]
<MMALVideoPort "vc.ril.camera:out:0(OPQV)": format=MMAL_FOURCC('OPQV')
buffers=10x128 frames=640x480@30fps>
>>> preview.inputs[0]
<MMALVideoPort "vc.ril.video_render:in:0(OPQV)": format=MMAL_FOURCC('OPQV')
buffers=10x128 frames=640x480@30fps>

Note that the connection has implicitly reconfigured the camera’s output port to use the OPAQUE (“OPQV”)
format. This is a special format used internally by the camera firmware which avoids passing complete frame
data around, instead passing pointers to frame data around (this explains the tiny buffer size of 128 bytes as very
little data is actually being shuttled between the components). Further, note that the connection has automatically
copied the port format, frame size and frame-rate to the preview’s input port.

MMALCamera

0

1

2

0 MMALRendererMMALConnection
OPQV

640x480
OPQV

640x480

16.1.4 Opaque Format

At this point it is worth exploring the differences between the camera’s three output ports:

• Output 0 is the “preview” output. On this port, the OPAQUE format contains a pointer to a complete frame
of data.

• Output 1 is the “video recording” output. On this port, the OPAQUE format contains a pointer to two
complete frames of data. The dual-frame format enables the H.264 video encoder to calculate motion
estimation without the encoder having to keep copies of prior frames itself (it can do this when something
other than OPAQUE format is used, but dual-image OPAQUE is much more efficient).

• Output 2 is the “still image” output. On this port, the OPAQUE format contains a pointer to a strip of an
image. The “strips” format is used by the JPEG encoder (not to be confused with the MJPEG encoder) to
deal with high resolution images efficiently.

Generally, you don’t need to worry about these differences. The mmalobj layer knows about them and negotiates
the most efficient format it can for connections. However, they’re worth bearing in mind if you’re aiming to get the
most out of the firmware or if you’re confused about why a particular format has been selected for a connection.

16.1.5 Component Configuration

So far we’ve seen how to construct components, configure their ports, and connect them together in rudimentary
pipelines. Now, let’s see how to configure components via control port parameters:

>>> camera.control.params[mmal.MMAL_PARAMETER_SYSTEM_TIME]
177572014208
>>> camera.control.params[mmal.MMAL_PARAMETER_SYSTEM_TIME]
177574350658
>>> camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS]
Fraction(1, 2)
>>> camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] = 0.75
>>> camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS]
Fraction(3, 4)

(continues on next page)

164 Chapter 16. API - mmalobj

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

>>> fx = camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT]
>>> fx
<picamera.mmal.MMAL_PARAMETER_IMAGEFX_T object at 0x765b8440>
>>> dir(fx)
['__class__', '__ctypes_from_outparam__', '__delattr__', '__dict__',
'__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',
'__gt__', '__hash__', '__init__', '__le__', '__lt__', '__module__',
'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__setattr__', '__setstate__', '__sizeof__', '__str__', '__subclasshook__',
'__weakref__', '_b_base_', '_b_needsfree_', '_fields_', '_objects', 'hdr',
'value']
>>> fx.value
0
>>> mmal.MMAL_PARAM_IMAGEFX_NONE
0
>>> fx.value = mmal.MMAL_PARAM_IMAGEFX_EMBOSS
>>> camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] = fx
>>> camera.control.params[mmal.MMAL_PARAMETER_BRIGHTNESS] = 1/2
>>> camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] = mmal.MMAL_PARAM_
→˓IMAGEFX_NONE
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/home/pi/picamera/picamera/mmalobj.py", line 1109, in __setitem__
assert mp.hdr.id == key

AttributeError: 'int' object has no attribute 'hdr'
>>> fx.value = mmal.MMAL_PARAM_IMAGEFX_NONE
>>> camera.control.params[mmal.MMAL_PARAMETER_IMAGE_EFFECT] = fx
>>> preview.disconnect()

Things to note:

• The parameter dictates the type of the value returned (and accepted, if the parameter is read-write).

• Many parameters accept a multitude of simple types like int239, float240, Fraction241, str242, etc.
However, some parameters use ctypes243 structures and such parameters only accept the relevant struc-
ture.

• The easiest way to use such “structured” parameters is to query them first, modify the resulting structure,
then write it back to the parameter.

To find out what parameters are available for use with the camera component, have a look at the source for the
PiCamera (page 95) class, especially property getters and setters.

16.1.6 File Output (RGB capture)

Let’s see how we can produce some file output from the camera. First we’ll perform a straight unencoded RGB
capture from the still port (2). As this is unencoded output we don’t need to construct anything else. All we need
to do is configure the port for RGB encoding, select an appropriate resolution, then activate the output port:

>>> camera.outputs[2].format = mmal.MMAL_ENCODING_RGB24
>>> camera.outputs[2].framesize = (640, 480)
>>> camera.outputs[2].commit()
>>> camera.outputs[2]
<MMALVideoPort "vc.ril.camera:out:2(RGB3)": format=MMAL_FOURCC('RGB3')
buffers=1x921600 frames=640x480@0fps>
>>> camera.outputs[2].enable()

239 https://docs.python.org/3.4/library/functions.html#int
240 https://docs.python.org/3.4/library/functions.html#float
241 https://docs.python.org/3.4/library/fractions.html#fractions.Fraction
242 https://docs.python.org/3.4/library/stdtypes.html#str
243 https://docs.python.org/3.4/library/ctypes.html#module-ctypes

16.1. The MMAL Tour 165

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/fractions.html#fractions.Fraction
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/ctypes.html#module-ctypes

Picamera 1.13 Documentation, Release 1.13

Unfortunately, that didn’t seem to do much! An output port that is participating in a connection needs nothing
more: it knows where its data is going. However, an output port without a connection requires a callback function
to be assigned so that something can be done with the buffers of data it produces.

The callback will be given two parameters: the MMALPort (page 179) responsible for producing the data, and the
MMALBuffer (page 182) containing the data. It is expected to return a bool244 which will be False if further
data is expected and True if no further data is expected. If True is returned, the callback will not be executed
again. In our case we’re going to write data out to a file we’ll open before-hand, and we should return True when
we see a buffer with the “frame end” flag set:

>>> camera.outputs[2].disable()
>>> import io
>>> output = io.open('image.data', 'wb')
>>> def image_callback(port, buf):
... output.write(buf.data)
... return bool(buf.flags & mmal.MMAL_BUFFER_HEADER_FLAG_FRAME_END)
...
>>> camera.outputs[2].enable(image_callback)
>>> output.tell()
0

At this stage you may note that while the file exists, nothing’s been written to it. This is because output ports 1
and 2 (the video and still ports) won’t produce any buffers until their “capture” parameter is enabled:

>>> camera.outputs[2].params[mmal.MMAL_PARAMETER_CAPTURE] = True
>>> camera.outputs[2].params[mmal.MMAL_PARAMETER_CAPTURE] = False
>>> output.tell()
921600
>>> camera.outputs[2].disable()
>>> output.close()

Congratulations! You’ve just captured your first image with the MMAL layer. Given we disconnected the preview
above, the current state of the system looks something like this:

MMALCamera

0

1

2 image.datacallback fn
RGB3

640x480

0 MMALRenderer

16.1.7 File Output (JPEG capture)

Whilst RGB is a useful format for processing we’d generally prefer something like JPEG for output. So, next
we’ll construct an MMAL JPEG encoder and use it to compress our RGB capture. Note that we’re not going to
connect the JPEG encoder to the camera yet; we’re just going to construct it standalone and feed it data from our
capture file, writing the output to another file:

>>> encoder = mo.MMALImageEncoder()
>>> encoder.inputs
(<MMALVideoPort "vc.ril.image_encode:in:0": format=MMAL_FOURCC('RGB2')
buffers=1x15360 frames=96x80@0fps>,)
>>> encoder.outputs

(continues on next page)

244 https://docs.python.org/3.4/library/functions.html#bool

166 Chapter 16. API - mmalobj

https://docs.python.org/3.4/library/functions.html#bool

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

(<MMALVideoPort "vc.ril.image_encode:out:0": format=MMAL_FOURCC('GIF ')
buffers=1x81920 frames=0x0@0fps>,)
>>> encoder.inputs[0].format = mmal.MMAL_ENCODING_RGB24
>>> encoder.inputs[0].framesize = (640, 480)
>>> encoder.inputs[0].commit()
>>> encoder.outputs[0].copy_from(encoder.inputs[0])
>>> encoder.outputs[0]
<MMALVideoPort "vc.ril.image_encode:out:0": format=MMAL_FOURCC('RGB3')
buffers=1x81920 frames=640x480@0fps>
>>> encoder.outputs[0].format = mmal.MMAL_ENCODING_JPEG
>>> encoder.outputs[0].commit()
>>> encoder.outputs[0]
<MMALVideoPort "vc.ril.image_encode:out:0(JPEG)": format=MMAL_FOURCC('JPEG')
buffers=1x307200 frames=0x0@0fps>
>>> encoder.outputs[0].params[mmal.MMAL_PARAMETER_JPEG_Q_FACTOR] = 90

Just pausing for a moment, let’s re-cap what we’ve got: an image encoder constructed, configured for 640x480
RGB input, and JPEG output with a quality factor of “90” (i.e. “very good” - don’t try to read much more than
this into JPEG quality settings!). Note that MMAL has set the buffer size at a size it thinks will be typical for the
output. As JPEG is a lossy format this won’t be precise and it’s entirely possible that we may receive multiple
callbacks for a single frame (if the compression overruns the expected buffer size).

Let’s continue:

>>> rgb_data = io.open('image.data', 'rb')
>>> jpg_data = io.open('image.jpg', 'wb')
>>> def image_callback(port, buf):
... jpg_data.write(buf.data)
... return bool(buf.flags & mmal.MMAL_BUFFER_HEADER_FLAG_FRAME_END)
...
>>> encoder.outputs[0].enable(image_callback)

16.1.8 File Input (JPEG encoding)

How do we feed data to a component without a connection? We enable its input port with a dummy callback (we
don’t need to “do” anything on data input). Then we request buffers from its input port, fill them with data and
send them back to the input port:

>>> encoder.inputs[0].enable(lamdba port, buf: True)
>>> buf = encoder.inputs[0].get_buffer()
>>> buf.data = rgb_data.read()
>>> encoder.inputs[0].send_buffer(buf)
>>> jpg_data.tell()
87830
>>> encoder.outputs[0].disable()
>>> encoder.inputs[0].disable()
>>> jpg_data.close()
>>> rgb_data.close()

Congratulations again! You’ve just produced a hardware-accelerated JPEG encoding. The following illustrates the
state of the system at the moment (note the camera and renderer still exist; they’re just not connected to anything
at the moment):

16.1. The MMAL Tour 167

Picamera 1.13 Documentation, Release 1.13

MMALCamera

0

1

2

0 MMALImageEncoder 0 image.jpgcallback fn
JPEG

640x480

0 MMALRenderer

image.data send_buffer
RGB3

640x480

Now let’s repeat the process but with the encoder attached to the still port on the camera directly. We can re-use
our image_callback routine from earlier and just assign a different output file to jpg_data:

>>> encoder.connect(camera.outputs[2])
<MMALConnection "vc.ril.camera:out:2/vc.ril.image_encode:in:0">
>>> encoder.connection.enable()
>>> encoder.inputs[0]
<MMALVideoPort "vc.ril.image_encode:in:0(OPQV)": format=MMAL_FOURCC('OPQV')
buffers=10x128 frames=640x480@0fps>
>>> jpg_data = io.open('direct.jpg', 'wb')
>>> encoder.outputs[0].enable(image_callback)
>>> camera.outputs[2].params[mmal.MMAL_PARAMETER_CAPTURE] = True
>>> camera.outputs[2].params[mmal.MMAL_PARAMETER_CAPTURE] = False
>>> jpg_data.tell()
99328
>>> encoder.connection.disable()
>>> jpg_data.close()

Now the state of our system looks like this:

MMALCamera

0

1

2 0 MMALImageEncoder 0MMALConnection
OPQV

640x480
OPQV

640x480

image.jpgcallback fn
JPEG

640x480

0 MMALRenderer

16.1.9 Threads & Synchronization

The one issue you may have noted is that image_callback is running in a background thread. If we were
running our capture extremely fast our main thread might disable the capture before our callback had run. Ideally
we want to activate capture, wait on some signal indicating that the callback has completed a single frame success-
fully, then disable capture. We can do this with the communications primitives from the standard threading245

module:

>>> from threading import Event
>>> finished = Event()
>>> def image_callback(port, buf):
... jpg_data.write(buf.data)
... if buf.flags & mmal.MMAL_BUFFER_HEADER_FLAG_FRAME_END:
... finished.set()

(continues on next page)

245 https://docs.python.org/3.4/library/threading.html#module-threading

168 Chapter 16. API - mmalobj

https://docs.python.org/3.4/library/threading.html#module-threading

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

... return True

... return False

...
>>> def do_capture(filename='direct.jpg'):
... global jpg_data
... jpg_data = io.open(filename, 'wb')
... finished.clear()
... encoder.outputs[0].enable(image_callback)
... camera.outputs[2].params[mmal.MMAL_PARAMETER_CAPTURE] = True
... if not finished.wait(10):
... raise Exception('capture timed out')
... camera.outputs[2].params[mmal.MMAL_PARAMETER_CAPTURE] = False
... encoder.outputs[0].disable()
... jpg_data.close()
...
>>> do_capture()

The above example has several rough edges: globals, no proper clean-up in the case of an exception, etc. but by
now you should be getting a pretty good idea of how picamera operates under the hood.

The major difference between picamera and a “typical” MMAL setup is that upon construction, the PiCamera
(page 95) class constructs both a MMALCamera (page 176) (accessible as PiCamera._camera) and a
MMALSplitter (page 177) (accessible as PiCamera._splitter). The splitter remains permanently at-
tached to the camera’s video port (output port 1). Furthermore, there’s always something connected to the camera’s
preview port; by default it’s a MMALNullSink (page 178) component which is switched with a MMALRenderer
(page 178) when the preview is started.

Encoders are constructed and destroyed as required by calls to capture() (page 97), start_recording()
(page 103), etc. The following illustrates a typical picamera pipeline whilst video recording without a preview:

MMALCamera

0

1

2

0 MMALSplitter

0

1

2

3

MMALConnection

OPQV
1280x720

OPQV
1280x720

0 MMALNullSinkMMALConnection
OPQV

1280x720
OPQV

1280x720

0 MMALVideoEncoder 0MMALConnection
OPQV

1280x720
OPQV

1280x720

video.h264callback fn
H264

1280x720

16.1.10 Debugging Facilities

Before we move onto the pure Python components it’s worth mentioning the debugging capabilities built into
mmalobj. Firstly, most objects have useful repr()246 outputs (in particular, it can be useful to simply evaluate
a MMALBuffer (page 182) to see what flags it’s got and how much data is stored in it). Also, there’s the
print_pipeline() (page 190) function. Give this a port and it’ll dump a human-readable version of your
pipeline leading up to that port:

>>> preview.inputs[0].enable(lambda port, buf: True)
>>> buf = preview.inputs[0].get_buffer()
>>> buf
<MMALBuffer object: flags=_____ length=0>
>>> buf.flags = mmal.MMAL_BUFFER_HEADER_FLAG_FRAME_END
>>> buf
<MMALBuffer object: flags=E____ length=0>
>>> buf.release()
>>> preview.inputs[0].disable()
>>> mo.print_pipeline(encoder.outputs[0])
vc.ril.camera [2] [0] vc.ril.image_encode [0]
encoding OPQV-strips --> OPQV-strips encoding JPEG

(continues on next page)

246 https://docs.python.org/3.4/library/functions.html#repr

16.1. The MMAL Tour 169

https://docs.python.org/3.4/library/functions.html#repr

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

buf 10x128 10x128 buf 1x307200
bitrate 0bps 0bps bitrate 0bps
frame 640x480@0fps 640x480@0fps frame 0x0@0fps

16.1.11 Python Components

So far all the components we’ve looked at have been “real” MMAL components which is to say that they’re
implemented in C, and all talk to bits of the firmware running on the GPU. However, a frequent request has
been to be able to modify frames from the camera before they reach the image or video encoder. The Python
components are an attempt to make this request relatively simple to achieve from within Python.

The means by which this is achieved are inefficient (to say the least) so don’t expect this to work with high resolu-
tions or framerates. The mmalobj layer in picamera includes the concept of a “Python MMAL” component. To
the user these components look a lot like the MMAL components you’ve been playing with above (MMALCamera
(page 176), MMALImageEncoder (page 178), etc). They are instantiated in a similar manner, they have the same
sort of ports, and they’re connected using the same means as ordinary MMAL components.

Let’s try this out by placing a transformation between the camera and a preview which will draw a cross over the
frames going to the preview. For this we’ll subclass picamera.array.PiArrayTransform (page 159).
This derives from MMALPythonComponent (page 187) and provides the useful capability of providing the
source and target buffers as numpy arrays containing RGB data:

>>> from picamera import array
>>> class Crosshair(array.PiArrayTransform):
... def transform(self, source, target):
... with source as sdata, target as tdata:
... tdata[...] = sdata
... tdata[240, :, :] = 0xff
... tdata[:, 320, :] = 0xff
... return False
...
>>> transform = Crosshair()

That’s all there is to constructing a transform! This one is a bit crude in as much as the coordinates are hard-coded,
and it’s very simplistic, but it should illustrate the principle nicely. Let’s connect it up between the camera and the
renderer:

>>> transform.connect(camera)
<MMALPythonConnection "vc.ril.camera.out:0(RGB3)/py.component:in:0">
>>> preview.connect(transform)
<MMALPythonConnection "py.component:out:0/vc.ril.video_render:in:0(RGB3)">
>>> transform.connection.enable()
>>> preview.connection.enable()
>>> transform.enable()

At this point we should take a look at the pipeline to see what’s been configured automatically:

>>> mo.print_pipeline(preview.inputs[0])
vc.ril.camera [0] [0] py.transform [0]
→˓ [0] vc.ril.video_render

encoding RGB3 --> RGB3 encoding RGB3 -->
→˓ RGB3 encoding

buf 1x921600 2x921600 buf 2x921600
→˓ 2x921600 buf

frame 640x480@30fps 640x480@30fps frame 640x480@30fps
→˓ 640x480@30fps frame

Apparently the MMAL camera component is outputting RGB data (which is extremely large) to a “py.transform”
component, which draws our cross-hair on the buffer and passes it onto the renderer again as RGB. This is part of
the inefficiency alluded to above: RGB is a very large format (compared to I420 which is half its size, or OPQV

170 Chapter 16. API - mmalobj

Picamera 1.13 Documentation, Release 1.13

which is tiny) so we’re shuttling a lot of data around here. Expect this to drop frames at higher resolutions or
framerates.

The other source of inefficiency isn’t obvious from the debug output above which gives the impression that the
“py.transform” component is actually part of the MMAL pipeline. In fact, this is a lie. Under the covers mmalobj
installs an output callback on the camera’s output port to feed data to the “py.transform” input port, uses a back-
ground thread to run the transform, then copies the results into buffers obtained from the preview’s input port.
In other words there’s really two (very short) MMAL pipelines with a hunk of Python running in between them.
If mmalobj does its job properly you shouldn’t need to worry about this implementation detail but it’s worth
bearing in mind from the perspective of performance.

16.1.12 Performance Hints

Generally you want to your frame handlers to be fast. To avoid dropping frames they’ve got to run in less than a
frame’s time (e.g. 33ms at 30fps). Bear in mind that a significant amount of time is going to be spent shuttling the
huge RGB frames around so you’ve actually got much less than 33ms available to you (how much will depend on
the speed of your Pi, what resolution you’re using, the framerate, etc).

Sometimes, performance can mean making unintuitive choices. For example, the Pillow library247 (the main imag-
ing library in Python these days) can construct images which share buffer memory (see Image.frombuffer),
but only for the indexed (grayscale) and RGBA formats, not RGB. Hence, it can make sense to use RGBA (a for-
mat even larger than RGB) if only because it allows you to avoid copying any data when performing a composite.

Another trick is to realize that although YUV420 has different sized planes, it’s often enough to manipulate the
Y plane only. In that case you can treat the front of the buffer as an indexed image (remember that Pillow can
share buffer memory with such images) and manipulate that directly. With tricks like these it’s possible to perform
multiple composites in realtime at 720p30 on a Pi3.

Here’s a (heavily commented) variant of the cross-hair example above that uses the lower level
MMALPythonComponent (page 187) class instead, and the Pillow library248 to perform compositing on
YUV420 in the manner just described:

from picamera import mmal, mmalobj as mo, PiCameraPortDisabled
from PIL import Image, ImageDraw
from signal import pause

class Crosshair(mo.MMALPythonComponent):
def __init__(self):

super(Crosshair, self).__init__(name='py.crosshair')
self._crosshair = None
self.inputs[0].supported_formats = mmal.MMAL_ENCODING_I420

def _handle_frame(self, port, buf):
If we haven't drawn the crosshair yet, do it now and cache the
result so we don't bother doing it again
if self._crosshair is None:

self._crosshair = Image.new('L', port.framesize)
draw = ImageDraw.Draw(self._crosshair)
draw.line([

(port.framesize.width // 2, 0),
(port.framesize.width // 2, port.framesize.height)],
fill=(255,), width=1)

draw.line([
(0, port.framesize.height // 2),
(port.framesize.width , port.framesize.height // 2)],
fill=(255,), width=1)

buf is the buffer containing the frame from our input port. First
we try and grab a buffer from our output port

(continues on next page)

247 https://pillow.readthedocs.io/
248 https://pillow.readthedocs.io/

16.1. The MMAL Tour 171

https://pillow.readthedocs.io/
https://pillow.readthedocs.io/

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

try:
out = self.outputs[0].get_buffer(False)

except PiCameraPortDisabled:
The port was disabled; that probably means we're shutting down so
return True to indicate we're all done and the component should
be disabled
return True

else:
if out:

We've got a buffer (if we don't get a buffer here it most
likely means things are going too slow downstream so we'll
just have to skip this frame); copy the input buffer to the
output buffer
out.copy_from(buf)
now grab a locked reference to the buffer's data by using
"with"
with out as data:

Construct a PIL Image over the Y plane at the front of
the data and tell PIL the buffer is writeable
img = Image.frombuffer('L', port.framesize, data, 'raw', 'L',

→˓0, 1)
img.readonly = False
img.paste(self._crosshair, (0, 0), mask=self._crosshair)

Send the output buffer back to the output port so it can
continue onward to whatever's downstream
try:

self.outputs[0].send_buffer(out)
except PiCameraPortDisabled:

The port was disabled; same as before this probably means
we're shutting down so return True to indicate we're done
return True

Return False to indicate that we want to continue processing
frames. If we returned True here, the component would be
disabled and no further buffers would be processed
return False

camera = mo.MMALCamera()
preview = mo.MMALRenderer()
transform = Crosshair()

camera.outputs[0].framesize = '720p'
camera.outputs[0].framerate = 30
camera.outputs[0].commit()

transform.connect(camera)
preview.connect(transform)

transform.connection.enable()
preview.connection.enable()

preview.enable()
transform.enable()
camera.enable()

pause()

It’s a sensible idea to perform any overlay rendering you want to do in a separate thread and then just handle
compositing your overlay onto the frame in the MMALPythonComponent._handle_frame() (page 188)
method. Anything you can do to avoid buffer copying is a bonus here.

Here’s a final (rather large) demonstration that puts all these things together to construct a

172 Chapter 16. API - mmalobj

Picamera 1.13 Documentation, Release 1.13

MMALPythonComponent (page 187) derivative with two purposes:

1. Render a partially transparent analogue clock in the top left of the frame.

2. Produces two equivalent I420 outputs; one for feeding to a preview renderer, and another to an encoder (we
could use a proper MMAL splitter for this but this is a demonstration of how Python components can have
multiple outputs too).

import io
import datetime as dt
from threading import Thread, Lock
from collections import namedtuple
from math import sin, cos, pi
from time import sleep

from picamera import mmal, mmalobj as mo, PiCameraPortDisabled
from PIL import Image, ImageDraw

class Coord(namedtuple('Coord', ('x', 'y'))):
@classmethod
def clock_arm(cls, radians):

return Coord(sin(radians), -cos(radians))

def __add__(self, other):
try:

return Coord(self.x + other[0], self.y + other[1])
except TypeError:

return Coord(self.x + other, self.y + other)

def __sub__(self, other):
try:

return Coord(self.x - other[0], self.y - other[1])
except TypeError:

return Coord(self.x - other, self.y - other)

def __mul__(self, other):
try:

return Coord(self.x * other[0], self.y * other[1])
except TypeError:

return Coord(self.x * other, self.y * other)

def __floordiv__(self, other):
try:

return Coord(self.x // other[0], self.y // other[1])
except TypeError:

return Coord(self.x // other, self.y // other)

yeah, I could do the rest (truediv, radd, rsub, etc.) but there's no
need here...

class ClockSplitter(mo.MMALPythonComponent):
def __init__(self):

super(ClockSplitter, self).__init__(name='py.clock', outputs=2)
self.inputs[0].supported_formats = {mmal.MMAL_ENCODING_I420}
self._lock = Lock()
self._clock_image = None
self._clock_thread = None

def enable(self):
super(ClockSplitter, self).enable()
self._clock_thread = Thread(target=self._clock_run)

(continues on next page)

16.1. The MMAL Tour 173

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

self._clock_thread.daemon = True
self._clock_thread.start()

def disable(self):
super(ClockSplitter, self).disable()
if self._clock_thread:

self._clock_thread.join()
self._clock_thread = None
with self._lock:

self._clock_image = None

def _clock_run(self):
draw the clock face up front (no sense drawing that every time)
origin = Coord(0, 0)
size = Coord(100, 100)
center = size // 2
face = Image.new('L', size)
draw = ImageDraw.Draw(face)
draw.ellipse([origin, size - 1], outline=(255,))
while self.enabled:

loop round rendering the clock hands on a copy of the face
img = face.copy()
draw = ImageDraw.Draw(img)
now = dt.datetime.now()
midnight = now.replace(

hour=0, minute=0, second=0, microsecond=0)
timestamp = (now - midnight).total_seconds()
hour_pos = center + Coord.clock_arm(2 * pi * (timestamp % 43200 /

→˓43200)) * 30
minute_pos = center + Coord.clock_arm(2 * pi * (timestamp % 3600 /

→˓3600)) * 45
second_pos = center + Coord.clock_arm(2 * pi * (timestamp % 60 / 60))

→˓* 45
draw.line([center, hour_pos], fill=(200,), width=2)
draw.line([center, minute_pos], fill=(200,), width=2)
draw.line([center, second_pos], fill=(200,), width=1)
assign the rendered image to the internal variable
with self._lock:

self._clock_image = img
sleep(0.2)

def _handle_frame(self, port, buf):
try:

out1 = self.outputs[0].get_buffer(False)
out2 = self.outputs[1].get_buffer(False)

except PiCameraPortDisabled:
return True

if out1:
copy the input frame to the first output buffer
out1.copy_from(buf)
with out1 as data:

construct an Image using the Y plane of the output
buffer's data and tell PIL we can write to the buffer
img = Image.frombuffer('L', port.framesize, data, 'raw', 'L', 0, 1)
img.readonly = False
with self._lock:

if self._clock_image:
img.paste(self._clock_image, (10, 10), self._clock_image)

if we've got a second output buffer replicate the first
buffer into it (note the difference between replicate and
copy_from)

(continues on next page)

174 Chapter 16. API - mmalobj

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

if out2:
out2.replicate(out1)

try:
self.outputs[0].send_buffer(out1)

except PiCameraPortDisabled:
return True

if out2:
try:

self.outputs[1].send_buffer(out2)
except PiCameraPortDisabled:

return True
return False

def main(output_filename):
camera = mo.MMALCamera()
preview = mo.MMALRenderer()
encoder = mo.MMALVideoEncoder()
clock = ClockSplitter()
target = mo.MMALPythonTarget(output_filename)

Configure camera output 0
camera.outputs[0].framesize = (640, 480)
camera.outputs[0].framerate = 24
camera.outputs[0].commit()

Configure H.264 encoder
encoder.outputs[0].format = mmal.MMAL_ENCODING_H264
encoder.outputs[0].bitrate = 2000000
encoder.outputs[0].commit()
p = encoder.outputs[0].params[mmal.MMAL_PARAMETER_PROFILE]
p.profile[0].profile = mmal.MMAL_VIDEO_PROFILE_H264_HIGH
p.profile[0].level = mmal.MMAL_VIDEO_LEVEL_H264_41
encoder.outputs[0].params[mmal.MMAL_PARAMETER_PROFILE] = p
encoder.outputs[0].params[mmal.MMAL_PARAMETER_VIDEO_ENCODE_INLINE_HEADER] =

→˓True
encoder.outputs[0].params[mmal.MMAL_PARAMETER_INTRAPERIOD] = 30
encoder.outputs[0].params[mmal.MMAL_PARAMETER_VIDEO_ENCODE_INITIAL_QUANT] = 22
encoder.outputs[0].params[mmal.MMAL_PARAMETER_VIDEO_ENCODE_MAX_QUANT] = 22
encoder.outputs[0].params[mmal.MMAL_PARAMETER_VIDEO_ENCODE_MIN_QUANT] = 22

Connect everything up and enable everything (no need to enable capture on
camera port 0)
clock.inputs[0].connect(camera.outputs[0])
preview.inputs[0].connect(clock.outputs[0])
encoder.inputs[0].connect(clock.outputs[1])
target.inputs[0].connect(encoder.outputs[0])
target.connection.enable()
encoder.connection.enable()
preview.connection.enable()
clock.connection.enable()
target.enable()
encoder.enable()
preview.enable()
clock.enable()
try:

sleep(10)
finally:

Disable everything and tear down the pipeline
target.disable()
encoder.disable()

(continues on next page)

16.1. The MMAL Tour 175

Picamera 1.13 Documentation, Release 1.13

(continued from previous page)

preview.disable()
clock.disable()
target.inputs[0].disconnect()
encoder.inputs[0].disconnect()
preview.inputs[0].disconnect()
clock.inputs[0].disconnect()

if __name__ == '__main__':
main('output.h264')

16.1.13 IO Classes

The Python MMAL components include a couple of useful IO classes: MMALSource and MMALTarget. We
could have used these instead of messing around with output callbacks in the sections above but it was worth
exploring how those callbacks operated first (in order to comprehend how Python transforms operated).

16.2 Components

class picamera.mmalobj.MMALBaseComponent
Represents a generic MMAL component. Class attributes are read to determine the component type, and
the OPAQUE sub-formats of each connectable port.

close()
Close the component and release all its resources. After this is called, most methods will raise excep-
tions if called.

disable()
Disables the component.

enable()
Enable the component. When a component is enabled it will process data sent to its input port(s),
sending the results to buffers on its output port(s). Components may be implicitly enabled by connec-
tions.

control
The MMALControlPort (page 178) control port of the component which can be used to configure
most aspects of the component’s behaviour.

enabled
Returns True if the component is currently enabled. Use enable() (page 176) and disable()
(page 176) to control the component’s state.

inputs
A sequence of MMALPort (page 179) objects representing the inputs of the component.

outputs
A sequence of MMALPort (page 179) objects representing the outputs of the component.

class picamera.mmalobj.MMALCamera
Bases: picamera.mmalobj.MMALBaseComponent (page 176)

Represents the MMAL camera component. This component has 0 input ports and 3 output ports. The
intended use of the output ports (which in turn determines the behaviour of those ports) is as follows:

• Port 0 is intended for preview renderers

• Port 1 is intended for video recording

• Port 2 is intended for still image capture

176 Chapter 16. API - mmalobj

Picamera 1.13 Documentation, Release 1.13

Use the MMAL_PARAMETER_CAMERA_CONFIG parameter on the control port to obtain and manipulate
the camera’s configuration.

annotate_rev
The annotation capabilities of the firmware have evolved over time and several structures are available
for querying and setting video annotations. By default the MMALCamera (page 176) class will pick
the latest annotation structure supported by the current firmware but you can select older revisions
with annotate_rev (page 177) for other purposes (e.g. testing).

class picamera.mmalobj.MMALCameraInfo
Bases: picamera.mmalobj.MMALBaseComponent (page 176)

Represents the MMAL camera-info component. Query the MMAL_PARAMETER_CAMERA_INFO parame-
ter on the control port to obtain information about the connected camera module.

info_rev
The camera information capabilities of the firmware have evolved over time and several structures are
available for querying camera information. When initialized, MMALCameraInfo (page 177) will
attempt to discover which structure is in use by the extant firmware. This property can be used to
discover the structure version and to modify the version in use for other purposes (e.g. testing).

class picamera.mmalobj.MMALComponent
Bases: picamera.mmalobj.MMALBaseComponent (page 176)

Represents an MMAL component that acts as a filter of some sort, with a single input that connects to an
upstream source port. This is an asbtract base class.

close()
Close the component and release all its resources. After this is called, most methods will raise excep-
tions if called.

connect(source, **options)
Connects the input port of this component to the specified source MMALPort (page 179) or
MMALPythonPort (page 185). Alternatively, as a convenience (primarily intended for command
line experimentation; don’t use this in scripts), source can be another component in which case the
first unconnected output port will be selected as source.

Keyword arguments will be passed along to the connection constructor. See MMALConnection
(page 181) and MMALPythonConnection (page 188) for further information.

disable()
Disables the component.

disconnect()
Destroy the connection between this component’s input port and the upstream component.

enable()
Enable the component. When a component is enabled it will process data sent to its input port(s),
sending the results to buffers on its output port(s). Components may be implicitly enabled by connec-
tions.

connection
The MMALConnection (page 181) or MMALPythonConnection (page 188) object linking this
component to the upstream component.

class picamera.mmalobj.MMALSplitter
Bases: picamera.mmalobj.MMALComponent (page 177)

Represents the MMAL splitter component. This component has 1 input port and 4 output ports which all
generate duplicates of buffers passed to the input port.

class picamera.mmalobj.MMALResizer
Bases: picamera.mmalobj.MMALComponent (page 177)

Represents the MMAL VPU resizer component. This component has 1 input port and 1 output port. This
supports resizing via the VPU. This is not as efficient as MMALISPResizer (page 178) but is available on
all firmware verions. The output port can (and usually should) have a different frame size to the input port.

16.2. Components 177

Picamera 1.13 Documentation, Release 1.13

class picamera.mmalobj.MMALISPResizer
Bases: picamera.mmalobj.MMALComponent (page 177)

Represents the MMAL ISP resizer component. This component has 1 input port and 1 output port, and
supports resizing via the VideoCore ISP, along with conversion of numerous formats into numerous other
formats (e.g. OPAQUE to RGB, etc). This is more efficient than MMALResizer (page 177) but is only
available on later firmware versions.

class picamera.mmalobj.MMALEncoder
Bases: picamera.mmalobj.MMALComponent (page 177)

Represents a generic MMAL encoder. This is an abstract base class.

class picamera.mmalobj.MMALVideoEncoder
Bases: picamera.mmalobj.MMALEncoder (page 178)

Represents the MMAL video encoder component. This component has 1 input port and 1 output port. The
output port is usually configured with MMAL_ENCODING_H264 or MMAL_ENCODING_MJPEG.

class picamera.mmalobj.MMALImageEncoder
Bases: picamera.mmalobj.MMALEncoder (page 178)

Represents the MMAL image encoder component. This component has 1 input port and 1 out-
put port. The output port is typically configured with MMAL_ENCODING_JPEG but can also use
MMAL_ENCODING_PNG, MMAL_ENCODING_GIF, etc.

class picamera.mmalobj.MMALDecoder
Bases: picamera.mmalobj.MMALComponent (page 177)

Represents a generic MMAL decoder. This is an abstract base class.

class picamera.mmalobj.MMALVideoDecoder
Bases: picamera.mmalobj.MMALDecoder (page 178)

Represents the MMAL video decoder component. This component has 1 input port and 1 output port. The
input port is usually configured with MMAL_ENCODING_H264 or MMAL_ENCODING_MJPEG.

class picamera.mmalobj.MMALImageDecoder
Bases: picamera.mmalobj.MMALDecoder (page 178)

Represents the MMAL iamge decoder component. This component has 1 input port and 1 output port. The
input port is usually configured with MMAL_ENCODING_JPEG.

class picamera.mmalobj.MMALRenderer
Bases: picamera.mmalobj.MMALComponent (page 177)

Represents the MMAL renderer component. This component has 1 input port and 0 output ports. It is used
to implement the camera preview and overlays.

class picamera.mmalobj.MMALNullSink
Bases: picamera.mmalobj.MMALComponent (page 177)

Represents the MMAL null-sink component. This component has 1 input port and 0 output ports. It is
used to keep the preview port “alive” (and thus calculating white-balance and exposure) when the camera
preview is not required.

16.3 Ports

class picamera.mmalobj.MMALControlPort(port)
Represents an MMAL port with properties to configure the port’s parameters.

disable()
Disable the port.

178 Chapter 16. API - mmalobj

Picamera 1.13 Documentation, Release 1.13

enable(callback=None)
Enable the port with the specified callback function (this must be None for connected ports, and a
callable for disconnected ports).

The callback function must accept two parameters which will be this MMALControlPort (page 178)
(or descendent) and an MMALBuffer (page 182) instance. Any return value will be ignored.

capabilities
The capabilities of the port. A bitfield of the following:

• MMAL_PORT_CAPABILITY_PASSTHROUGH

• MMAL_PORT_CAPABILITY_ALLOCATION

• MMAL_PORT_CAPABILITY_SUPPORTS_EVENT_FORMAT_CHANGE

enabled
Returns a bool249 indicating whether the port is currently enabled. Unlike other classes, this is a
read-only property. Use enable() (page 178) and disable() (page 178) to modify the value.

index
Returns an integer indicating the port’s position within its owning list (inputs, outputs, etc.)

params
The configurable parameters for the port. This is presented as a mutable mapping of parameter num-
bers to values, implemented by the MMALPortParams (page 181) class.

type
The type of the port. One of:

• MMAL_PORT_TYPE_OUTPUT

• MMAL_PORT_TYPE_INPUT

• MMAL_PORT_TYPE_CONTROL

• MMAL_PORT_TYPE_CLOCK

class picamera.mmalobj.MMALPort(port, opaque_subformat=’OPQV’)
Bases: picamera.mmalobj.MMALControlPort (page 178)

Represents an MMAL port with properties to configure and update the port’s format. This is the base class of
MMALVideoPort (page 180), MMALAudioPort (page 181), and MMALSubPicturePort (page 181).

commit()
Commits the port’s configuration and automatically updates the number and size of associated buffers
according to the recommendations of the MMAL library. This is typically called after adjusting the
port’s format and/or associated settings (like width and height for video ports).

connect(other, **options)
Connect this port to the other MMALPort (page 179) (or MMALPythonPort (page 185)). The type
and configuration of the connection will be automatically selected.

Various connection options can be specified as keyword arguments. These will be passed onto the
MMALConnection (page 181) or MMALPythonConnection (page 188) constructor that is called
(see those classes for an explanation of the available options).

copy_from(source)
Copies the port’s format (page 180) from the source MMALControlPort (page 178).

disable()
Disable the port.

disconnect()
Destroy the connection between this port and another port.

249 https://docs.python.org/3.4/library/functions.html#bool

16.3. Ports 179

https://docs.python.org/3.4/library/functions.html#bool

Picamera 1.13 Documentation, Release 1.13

enable(callback=None)
Enable the port with the specified callback function (this must be None for connected ports, and a
callable for disconnected ports).

The callback function must accept two parameters which will be this MMALControlPort (page 178)
(or descendent) and an MMALBuffer (page 182) instance. The callback should return True when
processing is complete and no further calls are expected (e.g. at frame-end for an image encoder), and
False otherwise.

flush()
Flush the port.

get_buffer(block=True, timeout=None)
Returns a MMALBuffer (page 182) from the associated pool (page 180). block and timeout act as
they do in the corresponding MMALPool.get_buffer() (page 184).

send_buffer(buf)
Send MMALBuffer (page 182) buf to the port.

bitrate
Retrieves or sets the bitrate limit for the port’s format.

buffer_count
The number of buffers allocated (or to be allocated) to the port. The mmalobj layer automatically
configures this based on recommendations from the MMAL library.

buffer_size
The size of buffers allocated (or to be allocated) to the port. The size of buffers is typically dictated by
the port’s format. The mmalobj layer automatically configures this based on recommendations from
the MMAL library.

connection
If this port is connected to another, this property holds the MMALConnection (page 181) or
MMALPythonConnection (page 188) object which represents that connection. If this port is not
connected, this property is None.

format
Retrieves or sets the encoding format of the port. Setting this attribute implicitly sets the encoding
variant to a sensible value (I420 in the case of OPAQUE).

After setting this attribute, call commit() (page 179) to make the changes effective.

opaque_subformat
Retrieves or sets the opaque sub-format that the port speaks. While most formats (I420, RGBA,
etc.) mean one thing, the opaque format is special; different ports produce different sorts of data
when configured for OPQV format. This property stores a string which uniquely identifies what the
associated port means for OPQV format.

If the port does not support opaque format at all, set this property to None.

MMALConnection (page 181) uses this information when negotiating formats for a connection be-
tween two ports.

pool
Returns the MMALPool (page 184) associated with the buffer, if any.

supported_formats
Retrieves a sequence of supported encodings on this port.

class picamera.mmalobj.MMALVideoPort(port, opaque_subformat=’OPQV’)
Bases: picamera.mmalobj.MMALPort (page 179)

Represents an MMAL port used to pass video data.

framerate
Retrieves or sets the framerate of the port’s video frames in fps.

After setting this attribute, call commit() (page 179) to make the changes effective.

180 Chapter 16. API - mmalobj

Picamera 1.13 Documentation, Release 1.13

framesize
Retrieves or sets the size of the port’s video frames as a (width, height) tuple. This attribute implicitly
handles scaling the given size up to the block size of the camera (32x16).

After setting this attribute, call commit() (page 179) to make the changes effective.

class picamera.mmalobj.MMALSubPicturePort(port, opaque_subformat=’OPQV’)
Bases: picamera.mmalobj.MMALPort (page 179)

Represents an MMAL port used to pass sub-picture (caption) data.

class picamera.mmalobj.MMALAudioPort(port, opaque_subformat=’OPQV’)
Bases: picamera.mmalobj.MMALPort (page 179)

Represents an MMAL port used to pass audio data.

class picamera.mmalobj.MMALPortParams(port)
Represents the parameters of an MMAL port. This class implements the MMALControlPort.params
(page 179) attribute.

Internally, the class understands how to convert certain structures to more common Python data-types.
For example, parameters that expect an MMAL_RATIONAL_T type will return and accept Python’s
Fraction250 class (or any other numeric types), while parameters that expect an MMAL_BOOL_T type
will treat anything as a truthy value. Parameters that expect the MMAL_PARAMETER_STRING_T struc-
ture will be treated as plain strings, and likewise MMAL_PARAMETER_INT32_T and similar structures
will be treated as plain ints.

Parameters that expect more complex structures will return and expect those structures verbatim.

16.4 Connections

class picamera.mmalobj.MMALBaseConnection(source, target, formats=())
Abstract base class for MMALConnection (page 181) and MMALPythonConnection (page 188). Han-
dles weakrefs to the source and target ports, and format negotiation. All other connection details are handled
by the descendent classes.

source
The source MMALPort (page 179) or MMALPythonPort (page 185) of the connection.

target
The target MMALPort (page 179) or MMALPythonPort (page 185) of the connection.

class picamera.mmalobj.MMALConnection(source, target, formats=default_formats, call-
back=None)

Bases: picamera.mmalobj.MMALBaseConnection (page 181)

Represents an MMAL internal connection between two components. The constructor accepts arguments
providing the source MMALPort (page 179) and target MMALPort (page 179).

The formats parameter specifies an iterable of formats (in preference order) that the connection may attempt
when negotiating formats between the two ports. If this is None, or an empty iterable, no negotiation will
take place and the source port’s format will simply be copied to the target port. Otherwise, the iterable will
be worked through in order until a format acceptable to both ports is discovered.

Note: The default formats list starts with OPAQUE; the class understands the different OPAQUE sub-
formats (see MMAL (page 79) for more information) and will only select OPAQUE if compatible sub-
formats can be used on both ports.

The callback parameter can optionally specify a callable which will be executed for each buffer that tra-
verses the connection (providing an opportunity to manipulate or drop that buffer). If specified, it must
be a callable which accepts two parameters: the MMALConnection (page 181) object sending the data,

250 https://docs.python.org/3.4/library/fractions.html#fractions.Fraction

16.4. Connections 181

https://docs.python.org/3.4/library/fractions.html#fractions.Fraction

Picamera 1.13 Documentation, Release 1.13

and the MMALBuffer (page 182) object containing data. The callable may optionally manipulate the
MMALBuffer (page 182) and return it to permit it to continue traversing the connection, or return None
in which case the buffer will be released.

Note: There is a significant performance penalty for specifying a callback between MMAL components as
it requires buffers to be copied from the GPU’s memory to the CPU’s memory and back again.

default_formats = (MMAL_ENCODING_OPAQUE, MMAL_ENCODING_I420, MMAL_ENCODING_RGB24, MMAL_ENCODING_BGR24, MMAL_ENCODING_RGBA, MMAL_ENCODING_BGRA)
Class attribute defining the default formats used to negotiate connections between MMAL compo-
nents.

disable()
Disables the connection.

enable()
Enable the connection. When a connection is enabled, data is continually transferred from the output
port of the source to the input port of the target component.

enabled
Returns True if the connection is enabled. Use enable() (page 182) and disable() (page 182)
to control the state of the connection.

16.5 Buffers

class picamera.mmalobj.MMALBuffer(buf)
Represents an MMAL buffer header. This is usually constructed from the buffer header pointer and is
largely supplied to make working with the buffer’s data a bit simpler. Using the buffer as a context manager
implicitly locks the buffer’s memory and returns the ctypes251 buffer object itself:

def callback(port, buf):
with buf as data:

data is a ctypes uint8 array with size entries
print(len(data))

Alternatively you can use the data (page 183) property directly, which returns and modifies the buffer’s
data as a bytes252 object (note this is generally slower than using the buffer object unless you are simply
replacing the entire buffer):

def callback(port, buf):
the buffer contents as a byte-string
print(buf.data)

acquire()
Acquire a reference to the buffer. This will prevent the buffer from being recycled until release()
(page 183) is called. This method can be called multiple times in which case an equivalent number of
calls to release() (page 183) must be made before the buffer will actually be released.

copy_from(source)
Copies all fields (including data) from the source MMALBuffer (page 182). This buffer must have
sufficient size (page 184) to store length (page 183) bytes from the source buffer. This method
implicitly sets offset (page 183) to zero, and length (page 183) to the number of bytes copied.

Note: This is fundamentally different to the operation of the replicate() (page 183) method. It
is much slower, but afterward the copied buffer is entirely independent of the source.

251 https://docs.python.org/3.4/library/ctypes.html#module-ctypes
252 https://docs.python.org/3.4/library/functions.html#bytes

182 Chapter 16. API - mmalobj

https://docs.python.org/3.4/library/ctypes.html#module-ctypes
https://docs.python.org/3.4/library/functions.html#bytes

Picamera 1.13 Documentation, Release 1.13

copy_meta(source)
Copy meta-data from the source MMALBuffer (page 182); specifically this copies all buffer fields
with the exception of data (page 183), length (page 183) and offset (page 183).

release()
Release a reference to the buffer. This is the opposing call to acquire() (page 182). Once all
references have been released, the buffer will be recycled.

replicate(source)
Replicates the source MMALBuffer (page 182). This copies all fields from the source buffer, includ-
ing the internal data (page 183) pointer. In other words, after replication this buffer and the source
buffer will share the same block of memory for data.

The source buffer will also be referenced internally by this buffer and will only be recycled once this
buffer is released.

Note: This is fundamentally different to the operation of the copy_from() (page 182) method. It
is much faster, but imposes the burden that two buffers now share data (the source cannot be released
until the replicant has been released).

reset()
Resets all buffer header fields to default values.

command
The command set in the buffer’s meta-data. This is usually 0 for buffers returned by an encoder;
typically this is only used by buffers sent to the callback of a control port.

data
The data held in the buffer as a bytes253 string. You can set this attribute to modify the data in the
buffer. Acceptable values are anything that supports the buffer protocol, and which contains size
(page 184) bytes or less. Setting this attribute implicitly modifies the length (page 183) attribute to
the length of the specified value and sets offset (page 183) to zero.

Note: Accessing a buffer’s data via this attribute is relatively slow (as it copies the buffer’s data
to/from Python objects). See the MMALBuffer (page 182) documentation for details of a faster (but
more complex) method.

dts
The decoding timestamp (DTS) of the buffer, as an integer number of microseconds or
MMAL_TIME_UNKNOWN.

flags
The flags set in the buffer’s meta-data, returned as a bitmapped integer. Typical flags include:

• MMAL_BUFFER_HEADER_FLAG_EOS – end of stream

• MMAL_BUFFER_HEADER_FLAG_FRAME_START – start of frame data

• MMAL_BUFFER_HEADER_FLAG_FRAME_END – end of frame data

• MMAL_BUFFER_HEADER_FLAG_KEYFRAME – frame is a key-frame

• MMAL_BUFFER_HEADER_FLAG_FRAME – frame data

• MMAL_BUFFER_HEADER_FLAG_CODECSIDEINFO – motion estimatation data

length
The length of data held in the buffer. Must be less than or equal to the allocated size of data held in
size (page 184) minus the data offset (page 183). This attribute can be used to effectively blank
the buffer by setting it to zero.

253 https://docs.python.org/3.4/library/functions.html#bytes

16.5. Buffers 183

https://docs.python.org/3.4/library/functions.html#bytes

Picamera 1.13 Documentation, Release 1.13

offset
The offset from the start of the buffer at which the data actually begins. Defaults to 0. If this is set to a
value which would force the current length (page 183) off the end of the buffer’s size (page 184),
then length (page 183) will be decreased automatically.

pts
The presentation timestamp (PTS) of the buffer, as an integer number of microseconds or
MMAL_TIME_UNKNOWN.

size
Returns the length of the buffer’s data area in bytes. This will be greater than or equal to length
(page 183) and is fixed in value.

class picamera.mmalobj.MMALQueue(queue)
Represents an MMAL buffer queue. Buffers can be added to the queue with the put() (page 184) method,
and retrieved from the queue (with optional wait timeout) with the get() (page 184) method.

get(block=True, timeout=None)
Get the next buffer from the queue. If block is True (the default) and timeout is None (the default)
then the method will block until a buffer is available. Otherwise timeout is the maximum time to wait
(in seconds) for a buffer to become available. If a buffer is not available before the timeout expires,
the method returns None.

Likewise, if block is False and no buffer is immediately available then None is returned.

put(buf)
Place MMALBuffer (page 182) buf at the back of the queue.

put_back(buf)
Place MMALBuffer (page 182) buf at the front of the queue. This is used when a buffer was removed
from the queue but needs to be put back at the front where it was originally taken from.

class picamera.mmalobj.MMALPool(pool)
Represents an MMAL pool containing MMALBuffer (page 182) objects. All active ports are associated
with a pool of buffers, and a queue. Instances can be treated as a sequence of MMALBuffer (page 182) ob-
jects but this is only recommended for debugging purposes; otherwise, use the get_buffer() (page 184),
send_buffer() (page 184), and send_all_buffers() (page 184) methods which work with the
encapsulated MMALQueue (page 184).

get_buffer(block=True, timeout=None)
Get the next buffer from the pool’s queue. See MMALQueue.get() (page 184) for the meaning of
the parameters.

resize(new_count, new_size)
Resizes the pool to contain new_count buffers with new_size bytes allocated to each buffer.

new_count must be 1 or more (you cannot resize a pool to contain no headers). However, new_size
can be 0 which causes all payload buffers to be released.

Warning: If the pool is associated with a port, the port must be disabled when resizing the pool.

send_all_buffers(port, block=True, timeout=None)
Send all buffers from the queue to port. block and timeout act as they do in get_buffer()
(page 184). If no buffer is available (for the values of block and timeout, PiCameraMMALError
(page 144) is raised).

send_buffer(port, block=True, timeout=None)
Get a buffer from the pool’s queue and send it to port. block and timeout act as they do in
get_buffer() (page 184). If no buffer is available (for the values of block and timeout,
PiCameraMMALError (page 144) is raised).

queue
The MMALQueue (page 184) associated with the pool.

184 Chapter 16. API - mmalobj

Picamera 1.13 Documentation, Release 1.13

class picamera.mmalobj.MMALPortPool(port)
Bases: picamera.mmalobj.MMALPool (page 184)

Construct an MMAL pool for the number and size of buffers required by the MMALPort (page 179) port.

send_all_buffers(port=None, block=True, timeout=None)
Send all buffers from the pool to port (or the port the pool is associated with by default). block and
timeout act as they do in MMALPool.get_buffer() (page 184).

send_buffer(port=None, block=True, timeout=None)
Get a buffer from the pool and send it to port (or the port the pool is associated with by default). block
and timeout act as they do in MMALPool.get_buffer() (page 184).

16.6 Python Extensions

class picamera.mmalobj.MMALPythonPort(owner, port_type, index)
Implements ports for Python-based MMAL components.

commit()
Commits the port’s configuration and automatically updates the number and size of associated buffers.
This is typically called after adjusting the port’s format and/or associated settings (like width and
height for video ports).

connect(other, **options)
Connect this port to the other MMALPort (page 179) (or MMALPythonPort (page 185)). The type
and configuration of the connection will be automatically selected.

Various connection options can be specified as keyword arguments. These will be passed onto the
MMALConnection (page 181) or MMALPythonConnection (page 188) constructor that is called
(see those classes for an explanation of the available options).

copy_from(source)
Copies the port’s format (page 186) from the source MMALControlPort (page 178).

disable()
Disable the port.

disconnect()
Destroy the connection between this port and another port.

enable(callback=None)
Enable the port with the specified callback function (this must be None for connected ports, and a
callable for disconnected ports).

The callback function must accept two parameters which will be this MMALControlPort (page 178)
(or descendent) and an MMALBuffer (page 182) instance. Any return value will be ignored.

get_buffer(block=True, timeout=None)
Returns a MMALBuffer (page 182) from the associated pool (page 186). block and timeout act as
they do in the corresponding MMALPool.get_buffer() (page 184).

send_buffer(buf)
Send MMALBuffer (page 182) buf to the port.

bitrate
Retrieves or sets the bitrate limit for the port’s format.

buffer_count
The number of buffers allocated (or to be allocated) to the port. The default is 2 but more may be
required in the case of long pipelines with replicated buffers.

buffer_size
The size of buffers allocated (or to be allocated) to the port. The size of buffers defaults to a value
dictated by the port’s format.

16.6. Python Extensions 185

Picamera 1.13 Documentation, Release 1.13

capabilities
The capabilities of the port. A bitfield of the following:

• MMAL_PORT_CAPABILITY_PASSTHROUGH

• MMAL_PORT_CAPABILITY_ALLOCATION

• MMAL_PORT_CAPABILITY_SUPPORTS_EVENT_FORMAT_CHANGE

connection
If this port is connected to another, this property holds the MMALConnection (page 181) or
MMALPythonConnection (page 188) object which represents that connection. If this port is not
connected, this property is None.

enabled
Returns a bool254 indicating whether the port is currently enabled. Unlike other classes, this is a
read-only property. Use enable() (page 185) and disable() (page 185) to modify the value.

format
Retrieves or sets the encoding format of the port. Setting this attribute implicitly sets the encoding
variant to a sensible value (I420 in the case of OPAQUE).

framerate
Retrieves or sets the framerate of the port’s video frames in fps.

framesize
Retrieves or sets the size of the source’s video frames as a (width, height) tuple. This attribute implic-
itly handles scaling the given size up to the block size of the camera (32x16).

index
Returns an integer indicating the port’s position within its owning list (inputs, outputs, etc.)

pool
Returns the MMALPool (page 184) associated with the buffer, if any.

supported_formats
Retrieves or sets the set of valid formats for this port. The set must always contain at least one valid
format. A single format can be specified; it will be converted implicitly to a singleton set.

If the current port format (page 186) is not a member of the new set, no error is raised. An error will
be raised when commit() (page 185) is next called if format (page 186) is still not a member of
the set.

type
The type of the port. One of:

• MMAL_PORT_TYPE_OUTPUT

• MMAL_PORT_TYPE_INPUT

• MMAL_PORT_TYPE_CONTROL

• MMAL_PORT_TYPE_CLOCK

class picamera.mmalobj.MMALPythonBaseComponent
Base class for Python-implemented MMAL components. This class provides the _commit_port()
(page 186) method used by descendents to control their ports’ behaviour, and the enabled
(page 187) property. However, it is unlikely that users will want to sub-class this directly. See
MMALPythonComponent (page 187) for a more useful starting point.

_commit_port(port)
Called by ports when their format is committed. Descendents may override this to reconfigure output
ports when input ports are committed, or to raise errors if the new port configuration is unacceptable.

254 https://docs.python.org/3.4/library/functions.html#bool

186 Chapter 16. API - mmalobj

https://docs.python.org/3.4/library/functions.html#bool

Picamera 1.13 Documentation, Release 1.13

Warning: This method must not reconfigure input ports when called; however it can reconfigure
output ports when input ports are committed.

close()
Close the component and release all its resources. After this is called, most methods will raise excep-
tions if called.

disable()
Disables the component.

enable()
Enable the component. When a component is enabled it will process data sent to its input port(s),
sending the results to buffers on its output port(s). Components may be implicitly enabled by connec-
tions.

control
The MMALControlPort (page 178) control port of the component which can be used to configure
most aspects of the component’s behaviour.

enabled
Returns True if the component is currently enabled. Use enable() (page 187) and disable()
(page 187) to control the component’s state.

inputs
A sequence of MMALPort (page 179) objects representing the inputs of the component.

outputs
A sequence of MMALPort (page 179) objects representing the outputs of the component.

class picamera.mmalobj.MMALPythonComponent(name=’py.component’, outputs=1)
Bases: picamera.mmalobj.MMALPythonBaseComponent (page 186)

Provides a Python-based MMAL component with a name, a single input and the specified number of outputs
(default 1). The connect() (page 188) and disconnect() (page 188) methods can be used to establish
or break a connection from the input port to an upstream component.

Typically descendents will override the _handle_frame() (page 188) method to respond to buffers sent
to the input port, and will set MMALPythonPort.supported_formats (page 186) in the constructor
to define the formats that the component will work with.

_commit_port(port)
Overridden to to copy the input port’s configuration to the output port(s), and to ensure that the output
port(s)’ format(s) match the input port’s format.

_handle_end_of_stream(port, buf)
Handles end-of-stream notifications passed to the component (where MMALBuffer.command
(page 183) is set to MMAL_EVENT_EOS).

The default implementation does nothing but return True (indicating that processing should halt).
Override this in descendents to respond to the end of stream.

The port parameter is the port into which the event arrived.

_handle_error(port, buf)
Handles error notifications passed to the component (where MMALBuffer.command (page 183) is
set to MMAL_EVENT_ERROR).

The default implementation does nothing but return True (indicating that processing should halt).
Override this in descendents to respond to error events.

The port parameter is the port into which the event arrived.

_handle_format_changed(port, buf)
Handles format change events passed to the component (where MMALBuffer.command (page 183)
is set to MMAL_EVENT_FORMAT_CHANGED).

16.6. Python Extensions 187

Picamera 1.13 Documentation, Release 1.13

The default implementation re-configures the input port of the component and emits the event on all
output ports for downstream processing. Override this method if you wish to do something else in
response to format change events.

The port parameter is the port into which the event arrived, and buf con-
tains the event itself (a MMAL_EVENT_FORMAT_CHANGED_T structure). Use
mmal_event_format_changed_get on the buffer’s data to extract the event.

_handle_frame(port, buf)
Handles frame data buffers (where MMALBuffer.command (page 183) is set to 0).

Typically, if the component has output ports, the method is expected to fetch a buffer from the output
port(s), write data into them, and send them back to their respective ports.

Return values are as for normal event handlers (True when no more buffers are expected, False
otherwise).

_handle_parameter_changed(port, buf)
Handles parameter change events passed to the component (where MMALBuffer.command
(page 183) is set to MMAL_EVENT_PARAMETER_CHANGED).

The default implementation does nothing but return False (indicating that processing should con-
tinue). Override this in descendents to respond to parameter changes.

The port parameter is the port into which the event arrived, and buf contains the event itself (a
MMAL_EVENT_PARAMETER_CHANGED_T structure).

close()
Close the component and release all its resources. After this is called, most methods will raise excep-
tions if called.

connect(source, **options)
Connects the input port of this component to the specified source MMALPort (page 179) or
MMALPythonPort (page 185). Alternatively, as a convenience (primarily intended for command
line experimentation; don’t use this in scripts), source can be another component in which case the
first unconnected output port will be selected as source.

Keyword arguments will be passed along to the connection constructor. See MMALConnection
(page 181) and MMALPythonConnection (page 188) for further information.

disable()
Disables the component.

disconnect()
Destroy the connection between this component’s input port and the upstream component.

enable()
Enable the component. When a component is enabled it will process data sent to its input port(s),
sending the results to buffers on its output port(s). Components may be implicitly enabled by connec-
tions.

connection
The MMALConnection (page 181) or MMALPythonConnection (page 188) object linking this
component to the upstream component.

class picamera.mmalobj.MMALPythonConnection(source, target, formats=default_formats,
callback=None)

Bases: picamera.mmalobj.MMALBaseConnection (page 181)

Represents a connection between an MMALPythonBaseComponent (page 186) and a
MMALBaseComponent (page 176) or another MMALPythonBaseComponent (page 186). The
constructor accepts arguments providing the source MMALPort (page 179) (or MMALPythonPort
(page 185)) and target MMALPort (page 179) (or MMALPythonPort (page 185)).

The formats parameter specifies an iterable of formats (in preference order) that the connection may attempt
when negotiating formats between the two ports. If this is None, or an empty iterable, no negotiation will

188 Chapter 16. API - mmalobj

Picamera 1.13 Documentation, Release 1.13

take place and the source port’s format will simply be copied to the target port. Otherwise, the iterable will
be worked through in order until a format acceptable to both ports is discovered.

The callback parameter can optionally specify a callable which will be executed for each buffer that traverses
the connection (providing an opportunity to manipulate or drop that buffer). If specified, it must be a
callable which accepts two parameters: the MMALPythonConnection (page 188) object sending the
data, and the MMALBuffer (page 182) object containing data. The callable may optionally manipulate the
MMALBuffer (page 182) and return it to permit it to continue traversing the connection, or return None
in which case the buffer will be released.

default_formats = (MMAL_ENCODING_I420, MMAL_ENCODING_RGB24, MMAL_ENCODING_BGR24, MMAL_ENCODING_RGBA, MMAL_ENCODING_BGRA)
Class attribute defining the default formats used to negotiate connections between Python and and
MMAL components, in preference order. Note that OPAQUE is not present in contrast with the
default formats in MMALConnection (page 181).

disable()
Disables the connection.

enable()
Enable the connection. When a connection is enabled, data is continually transferred from the output
port of the source to the input port of the target component.

enabled
Returns True if the connection is enabled. Use enable() (page 189) and disable() (page 189)
to control the state of the connection.

class picamera.mmalobj.MMALPythonSource(input)
Bases: picamera.mmalobj.MMALPythonBaseComponent (page 186)

Provides a source for other MMALComponent (page 177) instances. The specified input is read in chunks
the size of the configured output buffer(s) until the input is exhausted. The wait() (page 189) method
can be used to block until this occurs. If the output buffer is configured to use a full-frame unencoded
format (like I420 or RGB), frame-end flags will be automatically generated by the source. When the input
is exhausted an empty buffer with the End Of Stream (EOS) flag will be sent.

The component provides all picamera’s usual IO-handling characteristics; if input is a string, a file with that
name will be opened as the input and closed implicitly when the component is closed. Otherwise, the input
will not be closed implicitly (the component did not open it, so the assumption is that closing input is the
caller’s responsibility). If input is an object with a read method it is assumed to be a file-like object and
is used as is. Otherwise, input is assumed to be a readable object supporting the buffer protocol (which is
wrapped in a BufferIO stream).

close()
Close the component and release all its resources. After this is called, most methods will raise excep-
tions if called.

disable()
Disables the component.

enable()
Enable the component. When a component is enabled it will process data sent to its input port(s),
sending the results to buffers on its output port(s). Components may be implicitly enabled by connec-
tions.

wait(timeout=None)
Wait for the source to send all bytes from the specified input. If timeout is specified, it is the number of
seconds to wait for completion. The method returns True if the source completed within the specified
timeout and False otherwise.

class picamera.mmalobj.MMALPythonTarget(output, done=1)
Bases: picamera.mmalobj.MMALPythonComponent (page 187)

Provides a simple component that writes all received buffers to the specified output until a frame with the
done flag is seen (defaults to MMAL_BUFFER_HEADER_FLAG_EOS indicating End Of Stream).

16.6. Python Extensions 189

Picamera 1.13 Documentation, Release 1.13

The component provides all picamera’s usual IO-handling characteristics; if output is a string, a file with
that name will be opened as the output and closed implicitly when the component is closed. Otherwise, the
output will not be closed implicitly (the component did not open it, so the assumption is that closing output
is the caller’s responsibility). If output is an object with a write method it is assumed to be a file-like
object and is used as is. Otherwise, output is assumed to be a writeable object supporting the buffer protocol
(which is wrapped in a BufferIO stream).

close()
Close the component and release all its resources. After this is called, most methods will raise excep-
tions if called.

enable()
Enable the component. When a component is enabled it will process data sent to its input port(s),
sending the results to buffers on its output port(s). Components may be implicitly enabled by connec-
tions.

wait(timeout=None)
Wait for the output to be “complete” as defined by the constructor’s done parameter. If timeout is
specified it is the number of seconds to wait for completion. The method returns True if the target
completed within the specified timeout and False otherwise.

16.7 Debugging

The following functions are useful for quickly dumping the state of a given MMAL pipeline:

picamera.mmalobj.debug_pipeline(port)
Given an MMALVideoPort (page 180) port, this traces all objects in the pipeline feeding it (including
components and connections) and yields each object in turn. Hence the generator typically yields something
like:

• MMALVideoPort (page 180) (the specified output port)

• MMALEncoder (page 178) (the encoder which owns the output port)

• MMALVideoPort (page 180) (the encoder’s input port)

• MMALConnection (page 181) (the connection between the splitter and encoder)

• MMALVideoPort (page 180) (the splitter’s output port)

• MMALSplitter (page 177) (the splitter on the camera’s video port)

• MMALVideoPort (page 180) (the splitter’s input port)

• MMALConnection (page 181) (the connection between the splitter and camera)

• MMALVideoPort (page 180) (the camera’s video port)

• MMALCamera (page 176) (the camera component)

picamera.mmalobj.print_pipeline(port)
Prints a human readable representation of the pipeline feeding the specified MMALVideoPort (page 180)
port.

Note: It is also worth noting that most classes, in particular MMALVideoPort (page 180) and MMALBuffer
(page 182) have useful repr()255 outputs which can be extremely useful with simple print()256 calls for
debugging.

255 https://docs.python.org/3.4/library/functions.html#repr
256 https://docs.python.org/3.4/library/functions.html#print

190 Chapter 16. API - mmalobj

https://docs.python.org/3.4/library/functions.html#repr
https://docs.python.org/3.4/library/functions.html#print

Picamera 1.13 Documentation, Release 1.13

16.8 Utility Functions

The following functions are provided to ease certain common operations in the picamera library. Users of
mmalobj may find them handy in various situations:

picamera.mmalobj.open_stream(stream, output=True, buffering=65536)
This is the core of picamera’s IO-semantics. It returns a tuple of a file-like object and a bool indicating
whether the stream requires closing once the caller is finished with it.

• If stream is a string, it is opened as a file object (with mode ‘wb’ if output is True, and the specified
amount of bufffering). In this case the function returns (stream, True).

• If stream is a stream with a write method, it is returned as (stream, False).

• Otherwise stream is assumed to be a writeable buffer and is wrapped with BufferIO. The function
returns (stream, True).

picamera.mmalobj.close_stream(stream, opened)
If opened is True, then the close method of stream will be called. Otherwise, the function will at-
tempt to call the flush method on stream (if one exists). This function essentially takes the output of
open_stream() (page 191) and finalizes the result.

picamera.mmalobj.to_resolution(value)
Converts value which may be a (width, height) tuple or a string containing a representation of a resolution
(e.g. “1024x768” or “1080p”) to a (width, height) tuple.

picamera.mmalobj.to_rational(value)
Converts value (which can be anything accepted by to_fraction()) to an MMAL_RATIONAL_T
structure.

picamera.mmalobj.buffer_bytes(buf)
Given an object which implements the buffer protocol257, this function returns the size of the object in bytes.
The object can be multi-dimensional or include items larger than byte-size.

257 https://docs.python.org/3.4/c-api/buffer.html#bufferobjects

16.8. Utility Functions 191

https://docs.python.org/3.4/c-api/buffer.html#bufferobjects

Picamera 1.13 Documentation, Release 1.13

192 Chapter 16. API - mmalobj

CHAPTER 17

Change log

17.1 Release 1.13 (2017-02-25)

1.13 includes numerous bug fixes and several major enhancements, mostly in the mmalobj (page 161) layer:

• 10 second captures should now work with the V2 module as the default CAPTURE_TIMEOUT has been
increased to 60 seconds (#284258)

• A bug in copy_to() (page 126) caused it to copy nothing when it encountered “unknown” timestamps in
the stream (#302259, #319260, #357261)

• A silly typo in code used by PiRGBArray (page 154) was fixed (#321262)

• A bug in capture_continuous() (page 98) which caused duplicate frames in the output was fixed
(#311263)

• Bitrate limits were removed on MJPEG, and full checking of H264 bitrates and macroblocks/s was imple-
mented (#315264)

• A bug was fixed in the sensor_mode (page 118) attribute which prevented it from being set after con-
struction (#324265)

• A bug in the custom encoders example was fixed (#337266)

• Fixed a rare race condition that occurred when multiple splitter ports were in use (#344267)

• Recording overlays is now possible, but currently requires using the lower level mmalobj (page 161) layer
(#196268)

• Capturing YUV arrays via PiYUVArray (page 154) is faster, thanks to GitHub user goosst (#308269)

258 https://github.com/waveform80/picamera/issues/284
259 https://github.com/waveform80/picamera/issues/302
260 https://github.com/waveform80/picamera/issues/319
261 https://github.com/waveform80/picamera/issues/357
262 https://github.com/waveform80/picamera/issues/321
263 https://github.com/waveform80/picamera/issues/311
264 https://github.com/waveform80/picamera/issues/315
265 https://github.com/waveform80/picamera/issues/324
266 https://github.com/waveform80/picamera/issues/337
267 https://github.com/waveform80/picamera/issues/344
268 https://github.com/waveform80/picamera/issues/196
269 https://github.com/waveform80/picamera/issues/308

193

https://github.com/waveform80/picamera/issues/284
https://github.com/waveform80/picamera/issues/302
https://github.com/waveform80/picamera/issues/319
https://github.com/waveform80/picamera/issues/357
https://github.com/waveform80/picamera/issues/321
https://github.com/waveform80/picamera/issues/311
https://github.com/waveform80/picamera/issues/315
https://github.com/waveform80/picamera/issues/324
https://github.com/waveform80/picamera/issues/337
https://github.com/waveform80/picamera/issues/344
https://github.com/waveform80/picamera/issues/196
https://github.com/waveform80/picamera/issues/308

Picamera 1.13 Documentation, Release 1.13

• Added the ability to specify a restart interval for JPEG encoding (#369270)

• Added a property allowing users to manually specify a framerate_range (page 113) for the camera
(#374271)

• Added support for partially transparent overlays in RGBA format (#199272)

• Improved MJPEG web-streaming recipe, many thanks to GitHub user BigNerd95! (#375273)

Substantial work has also gone into improving the documentation. In particular:

• The Advanced Recipes (page 25) chapter has been thoroughly re-worked and I would encourage anyone
using the camera for Computer Vision purposes to re-read that chapter

• The Camera Hardware (page 65) chapter has been extended to include a thorough introduction to the low
level operation of the camera module. This is important for understanding the limitations and peculiarities
of the system

• Anyone interested in using a lower level API to control the camera (which includes capabilities like manip-
ulating frames before they hit the video encoder) should read the API - mmalobj (page 161) chapter

• Finally, some work was done on enhancing the PDF and EPub versions of the documentation. These should
now be much more useable in hard-copy and on e-readers

17.2 Release 1.12 (2016-07-03)

1.12 is almost entirely a bug fix release:

• Fixed issue with unencoded captures in Python 3 (#297274)

• Fixed several Python 3 bytes/unicode issues that were related to #297275 (I’d erroneously run the picamera
test suite twice against Python 2 instead of 2 and 3 when releasing 1.11, which is how these snuck in)

• Fixed multi-dimensional arrays for overlays under Python 3

• Finished alternate CIE constructors for the Color (page 147) class

17.3 Release 1.11 (2016-06-19)

1.11 on the surface consists mostly of enhancements, but underneath includes a major re-write of picamera’s core:

• Direct capture to buffer-protocol objects, such as numpy arrays (#241276)

• Add request_key_frame() (page 102) method to permit manual request of an I-frame during H264
recording; this is now used implicitly by split_recording() (page 102) (#257277)

• Added timestamp (page 120) attribute to query camera’s clock (#212278)

• Added framerate_delta (page 112) to permit small adjustments to the camera’s framerate to be per-
formed “live” (#279279)

• Added clear() (page 126) and copy_to() (page 126) methods to PiCameraCircularIO
(page 125) (#216280)

270 https://github.com/waveform80/picamera/issues/369
271 https://github.com/waveform80/picamera/issues/374
272 https://github.com/waveform80/picamera/issues/199
273 https://github.com/waveform80/picamera/issues/375
274 https://github.com/waveform80/picamera/issues/297
275 https://github.com/waveform80/picamera/issues/297
276 https://github.com/waveform80/picamera/issues/241
277 https://github.com/waveform80/picamera/issues/257
278 https://github.com/waveform80/picamera/issues/212
279 https://github.com/waveform80/picamera/pull/279
280 https://github.com/waveform80/picamera/issues/216

194 Chapter 17. Change log

https://github.com/waveform80/picamera/issues/369
https://github.com/waveform80/picamera/issues/374
https://github.com/waveform80/picamera/issues/199
https://github.com/waveform80/picamera/issues/375
https://github.com/waveform80/picamera/issues/297
https://github.com/waveform80/picamera/issues/297
https://github.com/waveform80/picamera/issues/241
https://github.com/waveform80/picamera/issues/257
https://github.com/waveform80/picamera/issues/212
https://github.com/waveform80/picamera/pull/279
https://github.com/waveform80/picamera/issues/216

Picamera 1.13 Documentation, Release 1.13

• Prevent setting attributes on the main PiCamera (page 95) class to ease debugging in educational settings
(#240281)

• Due to the core re-writes in this version, you may require cutting edge firmware (sudo rpi-update) if
you are performing unencoded captures, unencoded video recording, motion estimation vector sampling, or
manual sensor mode setting.

• Added property to control preview’s resolution (page 134) separately from the camera’s resolution
(page 117) (required for maximum resolution previews on the V2 module - #296282).

There are also several bug fixes:

• Fixed basic stereoscopic operation on compute module (#218283)

• Fixed accessing framerate as a tuple (#228284)

• Fixed hang when invalid file format is specified (#236285)

• Fixed multiple bayer captures with capture_sequence() (page 100) and
capture_continuous() (page 98) (#264286)

• Fixed usage of “falsy” custom outputs with motion_output (#281287)

Many thanks to the community, and especially thanks to 6by9 (one of the firmware developers) who’s fielded
seemingly endless questions and requests from me in the last couple of months!

17.4 Release 1.10 (2015-03-31)

1.10 consists mostly of minor enhancements:

• The major enhancement is the addition of support for the camera’s flash driver. This is relatively complex
to configure, but a full recipe has been included in the documentation (#184288)

• A new intra_refresh attribute is added to the start_recording() (page 103) method permitting control
of the intra-frame refresh method (#193289)

• The GPIO pins controlling the camera’s LED are now configurable. This is mainly for any compute module
users, but also for anyone who wishes to use the device tree blob to reconfigure the pins used (#198290)

• The new annotate V3 struct is now supported, providing custom background colors for annotations, and
configurable text size. As part of this work a new Color (page 147) class was introduced for representation
and manipulation of colors (#203291)

• Reverse enumeration of frames in PiCameraCircularIO (page 125) is now supported efficiently (with-
out having to convert frames to a list first) (#204292)

• Finally, the API documentation has been re-worked as it was getting too large to comfortably load on all
platforms (no ticket)

17.5 Release 1.9 (2015-01-01)

1.9 consists mostly of bug fixes with a couple of minor new features:

281 https://github.com/waveform80/picamera/issues/240
282 https://github.com/waveform80/picamera/issues/296
283 https://github.com/waveform80/picamera/issues/218
284 https://github.com/waveform80/picamera/issues/228
285 https://github.com/waveform80/picamera/issues/236
286 https://github.com/waveform80/picamera/issues/264
287 https://github.com/waveform80/picamera/issues/281
288 https://github.com/waveform80/picamera/issues/184
289 https://github.com/waveform80/picamera/issues/193
290 https://github.com/waveform80/picamera/issues/198
291 https://github.com/waveform80/picamera/issues/203
292 https://github.com/waveform80/picamera/issues/204

17.4. Release 1.10 (2015-03-31) 195

https://github.com/waveform80/picamera/issues/240
https://github.com/waveform80/picamera/issues/296
https://github.com/waveform80/picamera/issues/218
https://github.com/waveform80/picamera/issues/228
https://github.com/waveform80/picamera/issues/236
https://github.com/waveform80/picamera/issues/264
https://github.com/waveform80/picamera/issues/281
https://github.com/waveform80/picamera/issues/184
https://github.com/waveform80/picamera/issues/193
https://github.com/waveform80/picamera/issues/198
https://github.com/waveform80/picamera/issues/203
https://github.com/waveform80/picamera/issues/204

Picamera 1.13 Documentation, Release 1.13

• The camera’s sensor mode can now be forced to a particular setting upon camera initialization with the new
sensor_mode parameter to PiCamera (page 95) (#165293)

• The camera’s initial framerate and resolution can also be specified as keyword arguments to the PiCamera
(page 95) initializer. This is primarily intended to reduce initialization time (#180294)

• Added the still_stats (page 119) attribute which controls whether an extra statistics pass is made
when capturing images from the still port (#166295)

• Fixed the led (page 116) attribute so it should now work on the Raspberry Pi model B+ (#170296)

• Fixed a nasty memory leak in overlay renderers which caused the camera to run out of memory when over-
lays were repeatedly created and destroyed (#174297) * Fixed a long standing issue with MJPEG recording
which caused camera lockups when resolutions greater than VGA were used (#47298 and #179299)

• Fixed a bug with incorrect frame metadata in PiCameraCircularIO (page 125). Unfortunately this
required breaking backwards compatibility to some extent. If you use this class and rely on the frame
metadata, please familiarize yourself with the new complete (page 121) attribute (#177300)

• Fixed a bug which caused PiCameraCircularIO (page 125) to ignore the splitter port it was recording
against (#176301)

• Several documentation issues got fixed too (#167302, #168303, #171304, #172305, #182306)

Many thanks to the community for providing several of these fixes as pull requests, and thanks for all the great
bug reports. Happy new year everyone!

17.6 Release 1.8 (2014-09-05)

1.8 consists of several new features and the usual bug fixes:

• A new chapter on detecting and correcting deprecated functionality was added to the docs (#149307)

• Stereoscopic cameras are now tentatively supported on the Pi compute module. Please note I have no
hardware for testing this, so the implementation is possibly (probably!) wrong; bug reports welcome!
(#153308)

• Text annotation functionality has been extended; up to 255 characters are now possible, and the new
annotate_frame_num (page 106) attribute adds rendering of the current frame number. In addition,
the new annotate_background (page 105) flag permits a dark background to be rendered behind all
annotations for contrast (#160309)

• Arbitrary image overlays can now be drawn on the preview using the new add_overlay() (page 96)
method. A new recipe has been included demonstrating overlays from PIL images and numpy arrays. As
part of this work the preview system was substantially changed; all older scripts should continue to work but
please be aware that most preview attributes are now deprecated; the new preview (page 117) attribute
replaces them (#144310)

293 https://github.com/waveform80/picamera/issues/165
294 https://github.com/waveform80/picamera/issues/180
295 https://github.com/waveform80/picamera/issues/166
296 https://github.com/waveform80/picamera/issues/170
297 https://github.com/waveform80/picamera/issues/174
298 https://github.com/waveform80/picamera/issues/47
299 https://github.com/waveform80/picamera/pull/179
300 https://github.com/waveform80/picamera/issues/177
301 https://github.com/waveform80/picamera/pull/176
302 https://github.com/waveform80/picamera/issues/167
303 https://github.com/waveform80/picamera/issues/168
304 https://github.com/waveform80/picamera/issues/171
305 https://github.com/waveform80/picamera/pull/172
306 https://github.com/waveform80/picamera/issues/182
307 https://github.com/waveform80/picamera/issues/149
308 https://github.com/waveform80/picamera/issues/153
309 https://github.com/waveform80/picamera/issues/160
310 https://github.com/waveform80/picamera/issues/144

196 Chapter 17. Change log

https://github.com/waveform80/picamera/issues/165
https://github.com/waveform80/picamera/issues/180
https://github.com/waveform80/picamera/issues/166
https://github.com/waveform80/picamera/issues/170
https://github.com/waveform80/picamera/issues/174
https://github.com/waveform80/picamera/issues/47
https://github.com/waveform80/picamera/pull/179
https://github.com/waveform80/picamera/issues/177
https://github.com/waveform80/picamera/pull/176
https://github.com/waveform80/picamera/issues/167
https://github.com/waveform80/picamera/issues/168
https://github.com/waveform80/picamera/issues/171
https://github.com/waveform80/picamera/pull/172
https://github.com/waveform80/picamera/issues/182
https://github.com/waveform80/picamera/issues/149
https://github.com/waveform80/picamera/issues/153
https://github.com/waveform80/picamera/issues/160
https://github.com/waveform80/picamera/issues/144

Picamera 1.13 Documentation, Release 1.13

• Image effect parameters can now be controlled via the new image_effect_params (page 114) attribute
(#143311)

• A bug in the handling of framerates meant that long exposures (>1s) weren’t operating correctly. This
should be fixed, but I’d be grateful if users could test this and let me know for certain (Exif metadata reports
the configured exposure speed so it can’t be used to determine if things are actually working) (#135312)

• A bug in 1.7 broke compatibility with older firmwares (resulting in an error message mentioning
“mmal_queue_timedwait”). The library should now on older firmwares (#154313)

• Finally, the confusingly named crop (page 108) attribute was changed to a deprecated alias for the new
zoom (page 120) attribute (#146314)

17.7 Release 1.7 (2014-08-08)

1.7 consists once more of new features, and more bug fixes:

• Text overlay on preview, image, and video output is now possible (#16315)

• Support for more than one camera on the compute module has been added, but hasn’t been tested yet
(#84316)

• The exposure_mode (page 110) 'off' has been added to allow locking down the exposure time, along
with some new recipes demonstrating this capability (#116317)

• The valid values for various attributes including awb_mode (page 107), meter_mode (page 116), and
exposure_mode (page 110) are now automatically included in the documentation (#130318)

• Support for unencoded formats (YUV, RGB, etc.) has been added to the start_recording()
(page 103) method (#132319)

• A couple of analysis classes have been added to picamera.array (page 153) to support the new unen-
coded recording formats (#139320)

• Several issues in the PiBayerArray class were fixed; this should now work correctly with Python 3, and
the demosaic() method should operate correctly (#133321, #134322)

• A major issue with multi-resolution recordings which caused all recordings to stop prematurely was fixed
(#136323)

• Finally, an issue with the example in the documentation for custom encoders was fixed (#128324)

Once again, many thanks to the community for another round of excellent bug reports - and many thanks to 6by9
and jamesh for their excellent work on the firmware and official utilities!

17.8 Release 1.6 (2014-07-21)

1.6 is half bug fixes, half new features:

311 https://github.com/waveform80/picamera/issues/143
312 https://github.com/waveform80/picamera/issues/135
313 https://github.com/waveform80/picamera/issues/154
314 https://github.com/waveform80/picamera/issues/146
315 https://github.com/waveform80/picamera/issues/16
316 https://github.com/waveform80/picamera/issues/84
317 https://github.com/waveform80/picamera/issues/116
318 https://github.com/waveform80/picamera/issues/130
319 https://github.com/waveform80/picamera/issues/132
320 https://github.com/waveform80/picamera/issues/139
321 https://github.com/waveform80/picamera/issues/133
322 https://github.com/waveform80/picamera/issues/134
323 https://github.com/waveform80/picamera/issues/136
324 https://github.com/waveform80/picamera/issues/128

17.7. Release 1.7 (2014-08-08) 197

https://github.com/waveform80/picamera/issues/143
https://github.com/waveform80/picamera/issues/135
https://github.com/waveform80/picamera/issues/154
https://github.com/waveform80/picamera/issues/146
https://github.com/waveform80/picamera/issues/16
https://github.com/waveform80/picamera/issues/84
https://github.com/waveform80/picamera/issues/116
https://github.com/waveform80/picamera/issues/130
https://github.com/waveform80/picamera/issues/132
https://github.com/waveform80/picamera/issues/139
https://github.com/waveform80/picamera/issues/133
https://github.com/waveform80/picamera/issues/134
https://github.com/waveform80/picamera/issues/136
https://github.com/waveform80/picamera/issues/128

Picamera 1.13 Documentation, Release 1.13

• The awb_gains (page 106) attribute is no longer write-only; you can now read it to determine the red/blue
balance that the camera is using (#98325)

• The new read-only exposure_speed (page 110) attribute will tell you the shutter speed the cam-
era’s auto-exposure has determined, or the shutter speed you’ve forced with a non-zero value of
shutter_speed (page 119) (#98326)

• The new read-only analog_gain (page 105) and digital_gain (page 108) attributes can be used to
determine the amount of gain the camera is applying at a couple of crucial points of the image processing
pipeline (#98327)

• The new drc_strength (page 108) attribute can be used to query and set the amount of dynamic range
compression the camera will apply to its output (#110328)

• The intra_period parameter for start_recording() (page 103) can now be set to 0 (which means
“produce one initial I-frame, then just P-frames”) (#117329)

• The burst parameter was added to the various capture() (page 97) methods; users are strongly advised
to read the cautions in the docs before relying on this parameter (#115330)

• One of the advanced recipes in the manual (“splitting to/from a circular stream”) failed under 1.5 due to
a lack of splitter-port support in the circular I/O stream class. This has now been rectified by adding a
splitter_port parameter to the constructor of PiCameraCircularIO (page 125) (#109331)

• Similarly, the array extensions (page 153) introduced in 1.5 failed to work when resizers were
present in the pipeline. This has been fixed by adding a size parameter to the constructor of all the cus-
tom output classes defined in that module (#121332)

• A bug that caused picamera to fail when the display was disabled has been squashed (#120333)

As always, many thanks to the community for another great set of bug reports!

17.9 Release 1.5 (2014-06-11)

1.5 fixed several bugs and introduced a couple of major new pieces of functionality:

• The new picamera.array (page 153) module provides a series of custom output classes which can be
used to easily obtain numpy arrays from a variety of sources (#107334)

• The motion_output parameter was added to start_recording() (page 103) to enable output of motion
vector data generated by the H.264 encoder. A couple of new recipes were added to the documentation to
demonstrate this (#94335)

• The ability to construct custom encoders was added, including some examples in the documentation. Many
thanks to user Oleksandr Sviridenko (d2rk) for helping with the design of this feature! (#97336)

• An example recipe was added to the documentation covering loading and conversion of raw Bayer data
(#95337)

325 https://github.com/waveform80/picamera/issues/98
326 https://github.com/waveform80/picamera/issues/98
327 https://github.com/waveform80/picamera/issues/98
328 https://github.com/waveform80/picamera/issues/110
329 https://github.com/waveform80/picamera/issues/117
330 https://github.com/waveform80/picamera/issues/115
331 https://github.com/waveform80/picamera/issues/109
332 https://github.com/waveform80/picamera/issues/121
333 https://github.com/waveform80/picamera/issues/120
334 https://github.com/waveform80/picamera/issues/107
335 https://github.com/waveform80/picamera/issues/94
336 https://github.com/waveform80/picamera/issues/97
337 https://github.com/waveform80/picamera/issues/95

198 Chapter 17. Change log

https://github.com/waveform80/picamera/issues/98
https://github.com/waveform80/picamera/issues/98
https://github.com/waveform80/picamera/issues/98
https://github.com/waveform80/picamera/issues/110
https://github.com/waveform80/picamera/issues/117
https://github.com/waveform80/picamera/issues/115
https://github.com/waveform80/picamera/issues/109
https://github.com/waveform80/picamera/issues/121
https://github.com/waveform80/picamera/issues/120
https://github.com/waveform80/picamera/issues/107
https://github.com/waveform80/picamera/issues/94
https://github.com/waveform80/picamera/issues/97
https://github.com/waveform80/picamera/issues/95

Picamera 1.13 Documentation, Release 1.13

• Speed of unencoded RGB and BGR captures was substantially improved in both Python 2 and 3 with a
little optimization work. The warning about using alpha-inclusive modes like RGBA has been removed as
a result (#103338)

• An issue with out-of-order calls to stop_recording() (page 105) when multiple recordings were active
was resolved (#105339)

• Finally, picamera caught up with raspistill and raspivid by offering a friendly error message when used with
a disabled camera - thanks to Andrew Scheller (lurch) for the suggestion! (#89340)

17.10 Release 1.4 (2014-05-06)

1.4 mostly involved bug fixes with a couple of new bits of functionality:

• The sei parameter was added to start_recording() (page 103) to permit inclusion of “Supplemental
Enhancement Information” in the output stream (#77341)

• The awb_gains (page 106) attribute was added to permit manual control of the auto-white-balance
red/blue gains (#74342)

• A bug which cause split_recording() (page 102) to fail when low framerates were configured was
fixed (#87343)

• A bug which caused picamera to fail when used in UNIX-style daemons, unless the module was imported
after the double-fork to background was fixed (#85344)

• A bug which caused the frame (page 111) attribute to fail when queried in Python 3 was fixed (#80345)

• A bug which caused raw captures with “odd” resolutions (like 100x100) to fail was fixed (#83346)

Known issues:

• Added a workaround for full-resolution YUV captures failing. This isn’t a complete fix, and attempting to
capture a JPEG before attempting to capture full-resolution YUV data will still fail, unless the GPU memory
split is set to something huge like 256Mb (#73347)

Many thanks to the community for yet more excellent quality bug reports!

17.11 Release 1.3 (2014-03-22)

1.3 was partly new functionality:

• The bayer parameter was added to the 'jpeg' format in the capture methods to permit output of the
camera’s raw sensor data (#52348)

• The record_sequence() (page 101) method was added to provide a cleaner interface for recording
multiple consecutive video clips (#53349)

• The splitter_port parameter was added to all capture methods and start_recording() (page 103) to
permit recording multiple simultaneous video streams (presumably with different options, primarily resize)
(#56350)

338 https://github.com/waveform80/picamera/issues/103
339 https://github.com/waveform80/picamera/issues/105
340 https://github.com/waveform80/picamera/issues/89
341 https://github.com/waveform80/picamera/issues/77
342 https://github.com/waveform80/picamera/issues/74
343 https://github.com/waveform80/picamera/issues/87
344 https://github.com/waveform80/picamera/issues/85
345 https://github.com/waveform80/picamera/issues/80
346 https://github.com/waveform80/picamera/issues/83
347 https://github.com/waveform80/picamera/issues/73
348 https://github.com/waveform80/picamera/issues/52
349 https://github.com/waveform80/picamera/issues/53
350 https://github.com/waveform80/picamera/issues/56

17.10. Release 1.4 (2014-05-06) 199

https://github.com/waveform80/picamera/issues/103
https://github.com/waveform80/picamera/issues/105
https://github.com/waveform80/picamera/issues/89
https://github.com/waveform80/picamera/issues/77
https://github.com/waveform80/picamera/issues/74
https://github.com/waveform80/picamera/issues/87
https://github.com/waveform80/picamera/issues/85
https://github.com/waveform80/picamera/issues/80
https://github.com/waveform80/picamera/issues/83
https://github.com/waveform80/picamera/issues/73
https://github.com/waveform80/picamera/issues/52
https://github.com/waveform80/picamera/issues/53
https://github.com/waveform80/picamera/issues/56

Picamera 1.13 Documentation, Release 1.13

• The limits on the framerate (page 111) attribute were increased after firmware #656 introduced numer-
ous new camera modes including 90fps recording (at lower resolutions) (#65351)

And partly bug fixes:

• It was reported that Exif metadata (including thumbnails) wasn’t fully recorded in JPEG output (#59352)

• Raw captures with capture_continuous() (page 98) and capture_sequence() (page 100) were
broken (#55353)

17.12 Release 1.2 (2014-02-02)

1.2 was mostly a bug fix release:

• A bug introduced in 1.1 caused split_recording() (page 102) to fail if it was preceded by a video-
port-based image capture (#49354)

• The documentation was enhanced to try and full explain the discrepancy between preview and capture
resolution, and to provide some insight into the underlying workings of the camera (#23355)

• A new property was introduced for configuring the preview’s layer at runtime although this probably won’t
find use until OpenGL overlays are explored (#48356)

17.13 Release 1.1 (2014-01-25)

1.1 was mostly a bug fix release:

• A nasty race condition was discovered which led to crashes with long-running processes (#40357)

• An assertion error raised when performing raw captures with an active resize parameter was fixed (#46358)

• A couple of documentation enhancements made it in (#41359 and #47360)

17.14 Release 1.0 (2014-01-11)

In 1.0 the major features added were:

• Debian packaging! (#12361)

• The new frame (page 111) attribute permits querying information about the frame last written to the output
stream (number, timestamp, size, keyframe, etc.) (#34362, #36363)

• All capture methods (capture() (page 97) et al), and the start_recording() (page 103) method
now accept a resize parameter which invokes a resizer prior to the encoding step (#21364)

• A new PiCameraCircularIO (page 125) stream class is provided to permit holding the last n seconds
of video in memory, ready for writing out to disk (or whatever you like) (#39365)

351 https://github.com/waveform80/picamera/issues/65
352 https://github.com/waveform80/picamera/issues/59
353 https://github.com/waveform80/picamera/issues/55
354 https://github.com/waveform80/picamera/issues/49
355 https://github.com/waveform80/picamera/issues/23
356 https://github.com/waveform80/picamera/issues/48
357 https://github.com/waveform80/picamera/issues/40
358 https://github.com/waveform80/picamera/issues/46
359 https://github.com/waveform80/picamera/pull/41
360 https://github.com/waveform80/picamera/issues/47
361 https://github.com/waveform80/picamera/issues/12
362 https://github.com/waveform80/picamera/issues/34
363 https://github.com/waveform80/picamera/issues/36
364 https://github.com/waveform80/picamera/issues/21
365 https://github.com/waveform80/picamera/issues/39

200 Chapter 17. Change log

https://github.com/waveform80/picamera/issues/65
https://github.com/waveform80/picamera/issues/59
https://github.com/waveform80/picamera/issues/55
https://github.com/waveform80/picamera/issues/49
https://github.com/waveform80/picamera/issues/23
https://github.com/waveform80/picamera/issues/48
https://github.com/waveform80/picamera/issues/40
https://github.com/waveform80/picamera/issues/46
https://github.com/waveform80/picamera/pull/41
https://github.com/waveform80/picamera/issues/47
https://github.com/waveform80/picamera/issues/12
https://github.com/waveform80/picamera/issues/34
https://github.com/waveform80/picamera/issues/36
https://github.com/waveform80/picamera/issues/21
https://github.com/waveform80/picamera/issues/39

Picamera 1.13 Documentation, Release 1.13

• There’s a new way to specify raw captures - simply use the format you require with the capture method of
your choice. As a result of this, the raw_format (page 117) attribute is now deprecated (#32366)

Some bugs were also fixed:

• GPIO.cleanup is no longer called on close() (page 101) (#35367), and GPIO set up is only done on first
use of the led (page 116) attribute which should resolve issues that users have been having with using
picamera in conjunction with GPIO

• Raw RGB video-port based image captures are now working again too (#32368)

As this is a new major-version, all deprecated elements were removed:

• The continuous method was removed; this was replaced by capture_continuous() (page 98) in 0.5
(#7369)

17.15 Release 0.8 (2013-12-09)

In 0.8 the major features added were:

• Capture of images whilst recording without frame-drop. Previously, images could be captured whilst record-
ing but only from the still port which resulted in dropped frames in the recorded video due to the mode
switch. In 0.8, use_video_port=True can be specified on capture methods whilst recording video to
avoid this.

• Splitting of video recordings into multiple files. This is done via the new split_recording()
(page 102) method, and requires that the start_recording() (page 103) method was called with
inline_headers set to True. The latter has now been made the default (technically this is a backwards in-
compatible change, but it’s relatively trivial and I don’t anticipate anyone’s code breaking because of this
change).

In addition a few bugs were fixed:

• Documentation updates that were missing from 0.7 (specifically the new video recording parameters)

• The ability to perform raw captures through the video port

• Missing exception imports in the encoders module (which caused very confusing errors in the case that an
exception was raised within an encoder thread)

17.16 Release 0.7 (2013-11-14)

0.7 is mostly a bug fix release, with a few new video recording features:

• Added quantisation and inline_headers options to start_recording() (page 103) method

• Fixed bugs in the crop (page 108) property

• The issue of captures fading to black over time when the preview is not running has been resolved. This
solution was to permanently activate the preview, but pipe it to a null-sink when not required. Note that this
means rapid capture gets even slower when not using the video port

• LED support is via RPi.GPIO only; the RPIO library simply doesn’t support it at this time

• Numerous documentation fixes
366 https://github.com/waveform80/picamera/issues/32
367 https://github.com/waveform80/picamera/issues/35
368 https://github.com/waveform80/picamera/issues/32
369 https://github.com/waveform80/picamera/issues/7

17.15. Release 0.8 (2013-12-09) 201

https://github.com/waveform80/picamera/issues/32
https://github.com/waveform80/picamera/issues/35
https://github.com/waveform80/picamera/issues/32
https://github.com/waveform80/picamera/issues/7

Picamera 1.13 Documentation, Release 1.13

17.17 Release 0.6 (2013-10-30)

In 0.6, the major features added were:

• New 'raw' format added to all capture methods (capture() (page 97), capture_continuous()
(page 98), and capture_sequence() (page 100)) to permit capturing of raw sensor data

• New raw_format (page 117) attribute to permit control of raw format (defaults to 'yuv', only other
setting currently is 'rgb')

• New shutter_speed (page 119) attribute to permit manual control of shutter speed (defaults to 0 for
automatic shutter speed, and requires latest firmware to operate - use sudo rpi-update to upgrade)

• New “Recipes” chapter in the documentation which demonstrates a wide variety of capture techniques
ranging from trivial to complex

17.18 Release 0.5 (2013-10-21)

In 0.5, the major features added were:

• New capture_sequence() (page 100) method

• continuous() method renamed to capture_continuous() (page 98). Old method name retained
for compatiblity until 1.0.

• use_video_port option for capture_sequence() (page 100) and capture_continuous()
(page 98) to allow rapid capture of JPEGs via video port

• New framerate (page 111) attribute to control video and rapid-image capture frame rates

• Default value for ISO (page 105) changed from 400 to 0 (auto) which fixes exposure_mode (page 110)
not working by default

• intraperiod and profile options for start_recording() (page 103)

In addition a few bugs were fixed:

• Byte strings not being accepted by continuous()

• Erroneous docs for ISO (page 105)

Many thanks to the community for the bug reports!

17.19 Release 0.4 (2013-10-11)

In 0.4, several new attributes were introduced for configuration of the preview window:

• preview_alpha (page 117)

• preview_fullscreen (page 117)

• preview_window (page 117)

Also, a new method for rapid continual capture of still images was introduced: continuous().

17.20 Release 0.3 (2013-10-04)

The major change in 0.3 was the introduction of custom Exif tagging for captured images, and fixing a silly bug
which prevented more than one image being captured during the lifetime of a PiCamera instance.

202 Chapter 17. Change log

Picamera 1.13 Documentation, Release 1.13

17.21 Release 0.2

The major change in 0.2 was support for video recording, along with the new resolution (page 117) property
which replaced the separate preview_resolution and stills_resolution properties.

17.21. Release 0.2 203

Picamera 1.13 Documentation, Release 1.13

204 Chapter 17. Change log

CHAPTER 18

License

Copyright 2013-2015 Dave Jones370

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the follow-
ing disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

The bayer pattern diagram (page 48) in the documentation is derived from Bayer_pattern_on_sensor.svg371 which
is copyright (c) Colin Burnett (User:Cburnett) on Wikipedia, modified under the terms of the GPL:

This work is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or any later version. This
work is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty
of merchantability or fitness for a particular purpose. See version 2 and version 3 of the GNU General Public
License for more details.

370 dave@waveform.org.uk
371 https://en.wikipedia.org/wiki/File:Bayer_pattern_on_sensor.svg

205

mailto:dave@waveform.org.uk
https://en.wikipedia.org/wiki/File:Bayer_pattern_on_sensor.svg

Picamera 1.13 Documentation, Release 1.13

The YUV420 planar diagram (page 26) in the documentation is Yuv420.svg372 created by Geoff Richards
(User:Qef) on Wikipedia, released into the public domain.

372 https://en.wikipedia.org/wiki/File:Yuv420.svg

206 Chapter 18. License

https://en.wikipedia.org/wiki/File:Yuv420.svg

Python Module Index

p
picamera, 95
picamera.array, 153
picamera.mmalobj, 161

207

Picamera 1.13 Documentation, Release 1.13

208 Python Module Index

Index

Symbols
_callback() (picamera.PiEncoder method), 137
_callback_write() (picamera.PiEncoder method), 137
_callback_write() (picamera.PiMultiImageEncoder

method), 141
_callback_write() (picamera.PiOneImageEncoder

method), 140
_callback_write() (picamera.PiRawImageMixin

method), 141
_callback_write() (picamera.PiRawMixin method), 139
_callback_write() (picamera.PiVideoEncoder method),

139
_close_output() (picamera.PiEncoder method), 137
_commit_port() (picam-

era.mmalobj.MMALPythonBaseComponent
method), 186

_commit_port() (picam-
era.mmalobj.MMALPythonComponent
method), 187

_create_encoder() (picamera.PiEncoder method), 137
_create_encoder() (picamera.PiImageEncoder method),

139
_create_encoder() (picamera.PiRawMixin method),

140
_create_encoder() (picamera.PiRawVideoEncoder

method), 140
_create_encoder() (picamera.PiVideoEncoder method),

139
_create_resizer() (picamera.PiEncoder method), 138
_handle_end_of_stream() (picam-

era.mmalobj.MMALPythonComponent
method), 187

_handle_error() (picam-
era.mmalobj.MMALPythonComponent
method), 187

_handle_format_changed() (picam-
era.mmalobj.MMALPythonComponent
method), 187

_handle_frame() (picam-
era.mmalobj.MMALPythonComponent
method), 188

_handle_parameter_changed() (picam-
era.mmalobj.MMALPythonComponent

method), 188
_next_output() (picamera.PiMultiImageEncoder

method), 141
_next_output() (picamera.PiRawMultiImageEncoder

method), 142
_open_output() (picamera.PiEncoder method), 138
_open_output() (picamera.PiMultiImageEncoder

method), 141

A
acquire() (picamera.mmalobj.MMALBuffer method),

182
active (picamera.PiEncoder attribute), 138
add_overlay() (picamera.PiCamera method), 96
alpha (picamera.PiRenderer attribute), 131
analog_gain (picamera.PiCamera attribute), 105
analyse() (picamera.array.PiAnalysisOutput method),

157
analyze() (picamera.array.PiAnalysisOutput method),

157
annotate_background (picamera.PiCamera attribute),

105
annotate_foreground (picamera.PiCamera attribute),

105
annotate_frame_num (picamera.PiCamera attribute),

106
annotate_rev (picamera.mmalobj.MMALCamera at-

tribute), 177
annotate_text (picamera.PiCamera attribute), 106
annotate_text_size (picamera.PiCamera attribute), 106
array (picamera.array.PiArrayOutput attribute), 153
awb_gains (picamera.PiCamera attribute), 106
awb_mode (picamera.PiCamera attribute), 107

B
bitrate (picamera.mmalobj.MMALPort attribute), 180
bitrate (picamera.mmalobj.MMALPythonPort at-

tribute), 185
Blue (class in picamera), 151
blue (picamera.Color attribute), 150
brightness (picamera.PiCamera attribute), 107
buffer_bytes() (in module picamera.mmalobj), 191
buffer_count (picamera.mmalobj.MMALPort at-

tribute), 180

209

Picamera 1.13 Documentation, Release 1.13

buffer_count (picamera.mmalobj.MMALPythonPort
attribute), 185

buffer_size (picamera.mmalobj.MMALPort attribute),
180

buffer_size (picamera.mmalobj.MMALPythonPort at-
tribute), 185

BufferIO (class in picamera), 128

C
camera_port (picamera.PiEncoder attribute), 136
capabilities (picamera.mmalobj.MMALControlPort at-

tribute), 179
capabilities (picamera.mmalobj.MMALPythonPort at-

tribute), 185
capture() (picamera.PiCamera method), 97
capture_continuous() (picamera.PiCamera method), 98
capture_sequence() (picamera.PiCamera method), 100
cie_lab (picamera.Color attribute), 150
cie_luv (picamera.Color attribute), 150
cie_xyz (picamera.Color attribute), 150
CircularIO (class in picamera), 126
clear() (picamera.PiCameraCircularIO method), 126
clock_mode (picamera.PiCamera attribute), 107
close() (picamera.array.PiArrayOutput method), 153
close() (picamera.BufferIO method), 128
close() (picamera.mmalobj.MMALBaseComponent

method), 176
close() (picamera.mmalobj.MMALComponent

method), 177
close() (picamera.mmalobj.MMALPythonBaseComponent

method), 187
close() (picamera.mmalobj.MMALPythonComponent

method), 188
close() (picamera.mmalobj.MMALPythonSource

method), 189
close() (picamera.mmalobj.MMALPythonTarget

method), 190
close() (picamera.PiCamera method), 101
close() (picamera.PiEncoder method), 138
close() (picamera.PiNullSink method), 134
close() (picamera.PiRenderer method), 131
close_stream() (in module picamera.mmalobj), 191
closed (picamera.PiCamera attribute), 107
Color (class in picamera), 147
color_effects (picamera.PiCamera attribute), 107
command (picamera.mmalobj.MMALBuffer attribute),

183
commit() (picamera.mmalobj.MMALPort method),

179
commit() (picamera.mmalobj.MMALPythonPort

method), 185
complete (picamera.PiVideoFrame attribute), 121
connect() (picamera.mmalobj.MMALComponent

method), 177
connect() (picamera.mmalobj.MMALPort method),

179
connect() (picamera.mmalobj.MMALPythonComponent

method), 188

connect() (picamera.mmalobj.MMALPythonPort
method), 185

connection (picamera.mmalobj.MMALComponent at-
tribute), 177

connection (picamera.mmalobj.MMALPort attribute),
180

connection (picamera.mmalobj.MMALPythonComponent
attribute), 188

connection (picamera.mmalobj.MMALPythonPort at-
tribute), 186

contrast (picamera.PiCamera attribute), 108
control (picamera.mmalobj.MMALBaseComponent at-

tribute), 176
control (picamera.mmalobj.MMALPythonBaseComponent

attribute), 187
copy_from() (picamera.mmalobj.MMALBuffer

method), 182
copy_from() (picamera.mmalobj.MMALPort method),

179
copy_from() (picamera.mmalobj.MMALPythonPort

method), 185
copy_meta() (picamera.mmalobj.MMALBuffer

method), 182
copy_to() (picamera.PiCameraCircularIO method), 126
crop (picamera.PiCamera attribute), 108
crop (picamera.PiRenderer attribute), 132

D
data (picamera.mmalobj.MMALBuffer attribute), 183
debug_pipeline() (in module picamera.mmalobj), 190
demosaic() (picamera.array.PiBayerArray method),

156
difference() (picamera.Color method), 149
digital_gain (picamera.PiCamera attribute), 108
disable() (picamera.mmalobj.MMALBaseComponent

method), 176
disable() (picamera.mmalobj.MMALComponent

method), 177
disable() (picamera.mmalobj.MMALConnection

method), 182
disable() (picamera.mmalobj.MMALControlPort

method), 178
disable() (picamera.mmalobj.MMALPort method), 179
disable() (picamera.mmalobj.MMALPythonBaseComponent

method), 187
disable() (picamera.mmalobj.MMALPythonComponent

method), 188
disable() (picamera.mmalobj.MMALPythonConnection

method), 189
disable() (picamera.mmalobj.MMALPythonPort

method), 185
disable() (picamera.mmalobj.MMALPythonSource

method), 189
disconnect() (picamera.mmalobj.MMALComponent

method), 177
disconnect() (picamera.mmalobj.MMALPort method),

179

210 Index

Picamera 1.13 Documentation, Release 1.13

disconnect() (picamera.mmalobj.MMALPythonComponent
method), 188

disconnect() (picamera.mmalobj.MMALPythonPort
method), 185

drc_strength (picamera.PiCamera attribute), 108
dts (picamera.mmalobj.MMALBuffer attribute), 183

E
enable() (picamera.mmalobj.MMALBaseComponent

method), 176
enable() (picamera.mmalobj.MMALComponent

method), 177
enable() (picamera.mmalobj.MMALConnection

method), 182
enable() (picamera.mmalobj.MMALControlPort

method), 178
enable() (picamera.mmalobj.MMALPort method), 179
enable() (picamera.mmalobj.MMALPythonBaseComponent

method), 187
enable() (picamera.mmalobj.MMALPythonComponent

method), 188
enable() (picamera.mmalobj.MMALPythonConnection

method), 189
enable() (picamera.mmalobj.MMALPythonPort

method), 185
enable() (picamera.mmalobj.MMALPythonSource

method), 189
enable() (picamera.mmalobj.MMALPythonTarget

method), 190
enabled (picamera.mmalobj.MMALBaseComponent

attribute), 176
enabled (picamera.mmalobj.MMALConnection at-

tribute), 182
enabled (picamera.mmalobj.MMALControlPort

attribute), 179
enabled (picamera.mmalobj.MMALPythonBaseComponent

attribute), 187
enabled (picamera.mmalobj.MMALPythonConnection

attribute), 189
enabled (picamera.mmalobj.MMALPythonPort at-

tribute), 186
encoder (picamera.PiEncoder attribute), 136
encoder_type (picamera.PiImageEncoder attribute),

139
encoder_type (picamera.PiVideoEncoder attribute),

138
event (picamera.PiEncoder attribute), 136
exception (picamera.PiEncoder attribute), 136
exif_tags (picamera.PiCamera attribute), 108
exposure_compensation (picamera.PiCamera attribute),

109
exposure_mode (picamera.PiCamera attribute), 110
exposure_speed (picamera.PiCamera attribute), 110

F
flags (picamera.mmalobj.MMALBuffer attribute), 183
flash_mode (picamera.PiCamera attribute), 110
flush() (picamera.array.PiBayerArray method), 156

flush() (picamera.array.PiMotionArray method), 157
flush() (picamera.array.PiRGBArray method), 154
flush() (picamera.array.PiYUVArray method), 155
flush() (picamera.mmalobj.MMALPort method), 180
format (picamera.mmalobj.MMALPort attribute), 180
format (picamera.mmalobj.MMALPythonPort at-

tribute), 186
format (picamera.PiEncoder attribute), 136
frame (picamera.PiCamera attribute), 111
frame (picamera.PiVideoFrameType attribute), 120
frame_size (picamera.PiVideoFrame attribute), 121
frame_type (picamera.PiVideoFrame attribute), 121
framerate (picamera.mmalobj.MMALPythonPort at-

tribute), 186
framerate (picamera.mmalobj.MMALVideoPort at-

tribute), 180
framerate (picamera.PiCamera attribute), 111
framerate_delta (picamera.PiCamera attribute), 112
framerate_range (picamera.PiCamera attribute), 113
frames (picamera.PiCameraCircularIO attribute), 126
framesize (picamera.mmalobj.MMALPythonPort at-

tribute), 186
framesize (picamera.mmalobj.MMALVideoPort

attribute), 181
from_cie_lab() (picamera.Color class method), 149
from_cie_luv() (picamera.Color class method), 149
from_cie_xyz() (picamera.Color class method), 149
from_hls() (picamera.Color class method), 149
from_hsv() (picamera.Color class method), 149
from_rgb() (picamera.Color class method), 150
from_rgb_565() (picamera.Color class method), 150
from_rgb_bytes() (picamera.Color class method), 150
from_string() (picamera.Color class method), 150
from_yiq() (picamera.Color class method), 150
from_yuv() (picamera.Color class method), 150
from_yuv_bytes() (picamera.Color class method), 150
fullscreen (picamera.PiRenderer attribute), 132

G
get() (picamera.mmalobj.MMALQueue method), 184
get_buffer() (picamera.mmalobj.MMALPool method),

184
get_buffer() (picamera.mmalobj.MMALPort method),

180
get_buffer() (picamera.mmalobj.MMALPythonPort

method), 185
getvalue() (picamera.BufferIO method), 128
getvalue() (picamera.CircularIO method), 127
Green (class in picamera), 151
green (picamera.Color attribute), 150

H
header (picamera.PiVideoFrame attribute), 121
height (picamera.PiResolution attribute), 122
hflip (picamera.PiCamera attribute), 113
hflip (picamera.PiRenderer attribute), 132
high (picamera.PiFramerateRange attribute), 123
hls (picamera.Color attribute), 150

Index 211

Picamera 1.13 Documentation, Release 1.13

hsv (picamera.Color attribute), 150
Hue (class in picamera), 152
hue (picamera.Color attribute), 150

I
image_denoise (picamera.PiCamera attribute), 113
image_effect (picamera.PiCamera attribute), 113
image_effect_params (picamera.PiCamera attribute),

114
index (picamera.mmalobj.MMALControlPort at-

tribute), 179
index (picamera.mmalobj.MMALPythonPort at-

tribute), 186
index (picamera.PiVideoFrame attribute), 121
info_rev (picamera.mmalobj.MMALCameraInfo at-

tribute), 177
input_port (picamera.PiEncoder attribute), 136
inputs (picamera.mmalobj.MMALBaseComponent at-

tribute), 176
inputs (picamera.mmalobj.MMALPythonBaseComponent

attribute), 187
ISO (picamera.PiCamera attribute), 105
iso (picamera.PiCamera attribute), 115

K
key_frame (picamera.PiVideoFrameType attribute),

120
keyframe (picamera.PiVideoFrame attribute), 122

L
layer (picamera.PiRenderer attribute), 132
led (picamera.PiCamera attribute), 116
length (picamera.mmalobj.MMALBuffer attribute),

183
Lightness (class in picamera), 152
lightness (picamera.Color attribute), 151
lock (picamera.CircularIO attribute), 127
low (picamera.PiFramerateRange attribute), 122

M
meter_mode (picamera.PiCamera attribute), 116
mmal_check() (in module picamera), 145
MMALAudioPort (class in picamera.mmalobj), 181
MMALBaseComponent (class in picamera.mmalobj),

176
MMALBaseConnection (class in picamera.mmalobj),

181
MMALBuffer (class in picamera.mmalobj), 182
MMALCamera (class in picamera.mmalobj), 176
MMALCameraInfo (class in picamera.mmalobj), 177
MMALComponent (class in picamera.mmalobj), 177
MMALConnection (class in picamera.mmalobj), 181
MMALConnection.default_formats (in module picam-

era.mmalobj), 182
MMALControlPort (class in picamera.mmalobj), 178
MMALDecoder (class in picamera.mmalobj), 178
MMALEncoder (class in picamera.mmalobj), 178

MMALImageDecoder (class in picamera.mmalobj),
178

MMALImageEncoder (class in picamera.mmalobj),
178

MMALISPResizer (class in picamera.mmalobj), 178
MMALNullSink (class in picamera.mmalobj), 178
MMALPool (class in picamera.mmalobj), 184
MMALPort (class in picamera.mmalobj), 179
MMALPortParams (class in picamera.mmalobj), 181
MMALPortPool (class in picamera.mmalobj), 184
MMALPythonBaseComponent (class in picam-

era.mmalobj), 186
MMALPythonComponent (class in picam-

era.mmalobj), 187
MMALPythonConnection (class in picam-

era.mmalobj), 188
MMALPythonConnection.default_formats (in module

picamera.mmalobj), 189
MMALPythonPort (class in picamera.mmalobj), 185
MMALPythonSource (class in picamera.mmalobj), 189
MMALPythonTarget (class in picamera.mmalobj), 189
MMALQueue (class in picamera.mmalobj), 184
MMALRenderer (class in picamera.mmalobj), 178
MMALResizer (class in picamera.mmalobj), 177
MMALSplitter (class in picamera.mmalobj), 177
MMALSubPicturePort (class in picamera.mmalobj),

181
MMALVideoDecoder (class in picamera.mmalobj),

178
MMALVideoEncoder (class in picamera.mmalobj), 178
MMALVideoPort (class in picamera.mmalobj), 180
motion_data (picamera.PiVideoFrameType attribute),

120

O
offset (picamera.mmalobj.MMALBuffer attribute), 183
opaque_subformat (picamera.mmalobj.MMALPort at-

tribute), 180
open_stream() (in module picamera.mmalobj), 191
output_port (picamera.PiEncoder attribute), 136
outputs (picamera.mmalobj.MMALBaseComponent

attribute), 176
outputs (picamera.mmalobj.MMALPythonBaseComponent

attribute), 187
outputs (picamera.PiEncoder attribute), 137
outputs_lock (picamera.PiEncoder attribute), 137
overlays (picamera.PiCamera attribute), 116

P
pad() (picamera.PiResolution method), 122
params (picamera.mmalobj.MMALControlPort at-

tribute), 179
parent (picamera.PiEncoder attribute), 137
PiAnalysisOutput (class in picamera.array), 157
PiArrayOutput (class in picamera.array), 153
PiArrayTransform (class in picamera.array), 159
PiBayerArray (class in picamera.array), 155
PiCamera (class in picamera), 95

212 Index

Picamera 1.13 Documentation, Release 1.13

picamera (module), 95
picamera.array (module), 153
picamera.mmalobj (module), 161
PiCameraAlphaStripping, 144
PiCameraAlreadyRecording, 144
PiCameraCircularIO (class in picamera), 125
PiCameraClosed, 144
PiCameraDeprecated, 143
PiCameraError, 144
PiCameraFallback, 143
PiCameraMMALError, 144
PiCameraNotRecording, 144
PiCameraPortDisabled, 144
PiCameraResizerEncoding, 143
PiCameraRuntimeError, 144
PiCameraValueError, 144
PiCameraWarning, 143
PiCookedMultiImageEncoder (class in picamera), 142
PiCookedOneImageEncoder (class in picamera), 141
PiCookedVideoEncoder (class in picamera), 140
PiEncoder (class in picamera), 135
PiFramerateRange (class in picamera), 122
PiImageEncoder (class in picamera), 139
PiMotionAnalysis (class in picamera.array), 158
PiMotionArray (class in picamera.array), 156
PiMultiImageEncoder (class in picamera), 141
PiNullSink (class in picamera), 134
PiOneImageEncoder (class in picamera), 140
PiOverlayRenderer (class in picamera), 133
PiPreviewRenderer (class in picamera), 134
PiRawImageMixin (class in picamera), 141
PiRawMixin (class in picamera), 139
PiRawMultiImageEncoder (class in picamera), 142
PiRawOneImageEncoder (class in picamera), 142
PiRawVideoEncoder (class in picamera), 140
PiRenderer (class in picamera), 131
PiResolution (class in picamera), 122
PiRGBAnalysis (class in picamera.array), 158
PiRGBArray (class in picamera.array), 154
PiVideoEncoder (class in picamera), 138
PiVideoFrame (class in picamera), 121
PiVideoFrameType (class in picamera), 120
PiYUVAnalysis (class in picamera.array), 158
PiYUVArray (class in picamera.array), 154
pool (picamera.mmalobj.MMALPort attribute), 180
pool (picamera.mmalobj.MMALPythonPort attribute),

186
pool (picamera.PiEncoder attribute), 137
position (picamera.PiVideoFrame attribute), 122
preview (picamera.PiCamera attribute), 117
preview_alpha (picamera.PiCamera attribute), 117
preview_fullscreen (picamera.PiCamera attribute), 117
preview_layer (picamera.PiCamera attribute), 117
preview_window (picamera.PiCamera attribute), 117
previewing (picamera.PiCamera attribute), 117
print_pipeline() (in module picamera.mmalobj), 190
pts (picamera.mmalobj.MMALBuffer attribute), 184
put() (picamera.mmalobj.MMALQueue method), 184

put_back() (picamera.mmalobj.MMALQueue method),
184

Q
queue (picamera.mmalobj.MMALPool attribute), 184

R
raw_format (picamera.PiCamera attribute), 117
read() (picamera.BufferIO method), 128
read() (picamera.CircularIO method), 127
read1() (picamera.CircularIO method), 127
readable() (picamera.BufferIO method), 128
readable() (picamera.CircularIO method), 127
readall() (picamera.BufferIO method), 128
readall() (picamera.CircularIO method), 127
readinto() (picamera.BufferIO method), 128
record_sequence() (picamera.PiCamera method), 101
recording (picamera.PiCamera attribute), 117
Red (class in picamera), 151
red (picamera.Color attribute), 151
release() (picamera.mmalobj.MMALBuffer method),

183
remove_overlay() (picamera.PiCamera method), 102
replicate() (picamera.mmalobj.MMALBuffer method),

183
request_key_frame() (picamera.PiCamera method),

102
request_key_frame() (picamera.PiVideoEncoder

method), 139
reset() (picamera.mmalobj.MMALBuffer method), 183
resize() (picamera.mmalobj.MMALPool method), 184
resizer (picamera.PiEncoder attribute), 137
resolution (picamera.PiCamera attribute), 117
resolution (picamera.PiPreviewRenderer attribute), 134
revision (picamera.PiCamera attribute), 118
rgb (picamera.Color attribute), 151
rgb_565 (picamera.Color attribute), 151
rgb_bytes (picamera.Color attribute), 151
rotation (picamera.PiCamera attribute), 118
rotation (picamera.PiRenderer attribute), 132

S
Saturation (class in picamera), 152
saturation (picamera.Color attribute), 151
saturation (picamera.PiCamera attribute), 118
seek() (picamera.BufferIO method), 128
seek() (picamera.CircularIO method), 127
seekable() (picamera.BufferIO method), 128
seekable() (picamera.CircularIO method), 127
send_all_buffers() (picamera.mmalobj.MMALPool

method), 184
send_all_buffers() (picamera.mmalobj.MMALPortPool

method), 185
send_buffer() (picamera.mmalobj.MMALPool

method), 184
send_buffer() (picamera.mmalobj.MMALPort

method), 180

Index 213

Picamera 1.13 Documentation, Release 1.13

send_buffer() (picamera.mmalobj.MMALPortPool
method), 185

send_buffer() (picamera.mmalobj.MMALPythonPort
method), 185

sensor_mode (picamera.PiCamera attribute), 118
sharpness (picamera.PiCamera attribute), 119
shutter_speed (picamera.PiCamera attribute), 119
size (picamera.BufferIO attribute), 129
size (picamera.CircularIO attribute), 128
size (picamera.mmalobj.MMALBuffer attribute), 184
source (picamera.mmalobj.MMALBaseConnection at-

tribute), 181
split() (picamera.PiVideoEncoder method), 139
split_recording() (picamera.PiCamera method), 102
split_size (picamera.PiVideoFrame attribute), 121
sps_header (picamera.PiVideoFrameType attribute),

120
start() (picamera.PiCookedOneImageEncoder method),

142
start() (picamera.PiEncoder method), 138
start() (picamera.PiRawImageMixin method), 141
start() (picamera.PiVideoEncoder method), 139
start_preview() (picamera.PiCamera method), 103
start_recording() (picamera.PiCamera method), 103
still_stats (picamera.PiCamera attribute), 119
stop() (picamera.PiEncoder method), 138
stop() (picamera.PiVideoEncoder method), 139
stop_preview() (picamera.PiCamera method), 104
stop_recording() (picamera.PiCamera method), 105
supported_formats (picamera.mmalobj.MMALPort at-

tribute), 180
supported_formats (picam-

era.mmalobj.MMALPythonPort attribute),
186

T
target (picamera.mmalobj.MMALBaseConnection at-

tribute), 181
tell() (picamera.BufferIO method), 128
tell() (picamera.CircularIO method), 127
timestamp (picamera.PiCamera attribute), 120
timestamp (picamera.PiVideoFrame attribute), 121
to_rational() (in module picamera.mmalobj), 191
to_resolution() (in module picamera.mmalobj), 191
transform() (picamera.array.PiArrayTransform

method), 159
transpose() (picamera.PiResolution method), 122
truncate() (picamera.array.PiArrayOutput method), 153
truncate() (picamera.BufferIO method), 128
truncate() (picamera.CircularIO method), 127
type (picamera.mmalobj.MMALControlPort attribute),

179
type (picamera.mmalobj.MMALPythonPort attribute),

186

U
update() (picamera.PiOverlayRenderer method), 133

V
vflip (picamera.PiCamera attribute), 120
vflip (picamera.PiRenderer attribute), 132
video_denoise (picamera.PiCamera attribute), 120
video_size (picamera.PiVideoFrame attribute), 121
video_stabilization (picamera.PiCamera attribute), 120

W
wait() (picamera.mmalobj.MMALPythonSource

method), 189
wait() (picamera.mmalobj.MMALPythonTarget

method), 190
wait() (picamera.PiEncoder method), 138
wait_recording() (picamera.PiCamera method), 105
width (picamera.PiResolution attribute), 122
window (picamera.PiRenderer attribute), 133
writable() (picamera.array.PiAnalysisOutput method),

157
writable() (picamera.BufferIO method), 128
writable() (picamera.CircularIO method), 127
write() (picamera.BufferIO method), 128
write() (picamera.CircularIO method), 127

Y
yiq (picamera.Color attribute), 151
yuv (picamera.Color attribute), 151
yuv_bytes (picamera.Color attribute), 151

Z
zoom (picamera.PiCamera attribute), 120

214 Index

	Installation
	Getting Started
	Basic Recipes
	Advanced Recipes
	Frequently Asked Questions (FAQ)
	Camera Hardware
	Development
	Deprecated Functionality
	API - The PiCamera Class
	API - Streams
	API - Renderers
	API - Encoders
	API - Exceptions
	API - Colors and Color Matching
	API - Arrays
	API - mmalobj
	Change log
	License
	Python Module Index

